
Term project

Intelligent, Learning System
a new ABI System built on the Open Services

Gateway initiative

Stephan Kei Nufer Mathias Buehlmann
<snufer@ini.phys.ethz.ch> <mbuehlma@ini.phys.ethz.ch>

Advisors
Prof. Dr. Rodney Douglas, Institute of Neuroinformatics, ETH/University Zurich

Prof. Dr. Josef Joller, University of Applied Sciences Rapperswil
Tobi Delbruck, Group Leader, Institute of Neuroinformatics, ETH/University Zurich

A cooperation between

Computer Science Department Institute of Neuroinformatics

University of Applied Science Rapperswil University and ETH Zurich

Oberseestrasse 10 Winterthurstrasse 190

8640 Rapperswil, Switzerland 8057 Zurich, Switzerland

http://www.hsr.ch http://www.ini.unizh.ch

Compiled: February 7, 2006

Typeset by LATEX

Preface

by Nufer Stephan Kei and Buehlmann Mathias

This article is the main part of our term project and chiefly addresses ABI System related aspects such
as its design, architecture and most importantly a complete description about how the system has been
implemented using OSGi bundles ([OSG]).
Next to this document there are two related documents which are also part of this term project.
These are:

• The RBC Protocol Specification ([NB05b])

• The RBC API ([NB05c])

In particular the RBC API will play a central role in our upcoming diploma thesis.

Acknowledgment

Special thanks goes to our professor Prof. Dr. Josef M. Joller who had given us the opportunity to accom-
plish an important part of the ABI System at the Institute of Neuroinformatics(INI) as a semester project
assignment.

Further credits goes to:

• Tobi Delbruck for the implementation of the enhanced PC Presence Sensor

• Our predecessors for providing us helpful information

Zurich, Institute of Neuroinformatics(INI), Switzerland, July 2005

Stephan Kei Nufer and Mathias Buehlmann

ii

iii

Abstract The presented term project is aimed at developing a new ABI System that has partly been
adapted from our predecessors which in turn needed to be completely refactored in order to benefit from
any advantage that an OSGi Framework might bring along in the sense that bundles can now implement
new ABI System features completely independent of each other.
We achieve this by exposing well defined interfaces which are located in a central bundle called core. Ad-
ditionally we introduce a new concept called Property Concept that considers that several different devices
may coexist within one building. Each device type can hereby provide its own idiosyncrasies in form of
properties and thus facilitating any generic access to its features.

To give a practical example of how this generic concept can be used we integrated a new custom bus
called falcon bus that incorporates new devices which can be assessed by its dedicated bus that addresses
them. According to the bus concept that has been introduced by our predecessors each device-set such
as the falcon device-set needs to implement a separate bus. The reason why such a distinction has been
made is because the concept presumes that each device-set is controlled by some kind of controller. In the
lon bus this happens to be a gateway called LNS Server and in the newly integrated falcon bus this is a
gateway called Falcon Communicator that represents a similar device that communicates with its sensors
and actuators using wireless instead of the lon technology.

Further we present a distributed client application solution that simplifies any future development of custom
client applications associated with the ABI System in the sense that it provides a compact application layer
standard and reference implementation that can be used to remotely control a building (RBC). Thus improv-
ing any development practices such as complex integration testing, debugging and maintenance remarkably.
Herewith we strike a familiar path that has already been applied in a previously distributed ABI System
([TZ03a], [TZ03b], [RS02]). In contrast to the latter system though we introduce two different standards that
define the system boundary. The first standard introduces a Remote Building Control Protocol (RBC) that
standardizes the communication between any distributed client application and the ABI System ([NB05b]).
The second standard has been implemented by the previously mentioned reference implementation that
replicates the entire ABI System that can be used by any distributed client application ([NB05c]).

Furthermore the application layer standard ([NB05c]) can now be extended by providing a bundle spe-
cific implementation instead of a remote one and hereby allowing any distributed client application to be
turned into either a separate bundle or a distributed client application.

In order to prove the concepts we developed a variety of distributed client applications that make use
of the remote API. Among other GUI applications we realized an application that is capable of managing
the ABI System in a distributed kind of fashion.

Finally we provide additional documentation materials that clearly outline distinct agreements that are
required to be adhered. Herewith we should achieve a system that can be kept low coupled, stable, easy to
maintain, expandable, easy to get acquainted with and most importantly we can reduce the point of failures
to a minimum.

term project, July 2005

Table of Contents

I Introduction 1

1 Introduction 2

1.1 Retrospection . 2

1.2 History . 2

1.3 Adaptive Building Intelligence (ABI) . 3

1.4 Terms and definitions . 3

1.5 Preconditions . 3

1.6 Document structure . 4

II Analysis 5

2 Analysis of the previous ABI System 6

2.1 ABI System issues . 6

2.1.1 Wire Admin Issues . 6

2.1.2 Other Issues . 7

2.2 OSGi Discussion . 7

2.3 Our Objectives . 8

3 Analysis of the new ABI System 9

3.1 Introduction . 9

3.2 The Falcon devices . 9

3.2.1 The Falcon Communicator . 10

3.2.2 The Falcon Presence-Daylight Device . 10

3.2.3 The Falcon Light-Actuator . 11

iv

TABLE OF CONTENTS v

3.3 Remote Control (RC) . 11

3.4 Property Concept . 12

3.5 The Client Server Model approach . 14

3.5.1 Overview . 14

3.5.2 Distributed System Solutions . 14

3.5.2.1 RMI . 15

3.5.2.2 SOAP . 16

3.5.2.3 A proprietary solution . 17

3.6 Enhanced Presence Detectors . 17

3.7 Server Discovery Service . 18

3.8 ABI Area bundle . 18

3.9 General Aspects . 18

3.10 Future considerations . 20

3.10.1 Providing two API’s . 20

3.10.2 LON bus integration . 21

III Architecture 22

4 ABI System Architecture 23

4.1 Introduction . 23

4.2 System Components overview . 23

4.2.1 Bus and device abstraction . 24

4.2.1.1 Property Provider . 26

4.2.1.2 Basic functionality . 26

4.2.1.3 Modification Notification . 26

4.2.1.4 Summary . 26

4.2.2 Structure abstraction . 27

4.2.3 Remote control . 28

4.2.3.1 Basic functionality . 28

4.2.3.2 Dependencies . 28

term project, July 2005

TABLE OF CONTENTS vi

4.2.3.3 Communication Subsystem . 29

4.2.3.4 Application Layer Protocol . 29

4.2.4 Remote service . 31

4.2.4.1 Basic functionality . 31

4.2.4.2 Dependencies . 31

4.2.4.3 Remote Service Protocol . 31

4.2.4.4 Notes . 32

4.2.5 Discovery system . 32

5 RBC Protocol Specification 33

5.1 General purpose . 33

5.2 RBC Message Format . 33

5.3 RBC Messages . 34

5.4 Applied example . 35

6 RBC API Specification 37

6.1 General purpose . 37

IV Design and Implementation 39

7 Introduction 40

7.1 Bundle overview . 41

7.2 Notes . 41

8 ABI Core Bundle 42

8.1 Overview . 42

8.2 Sensor services . 43

8.3 Actuator services . 44

8.4 Abstract Bus Concept . 44

8.5 Property Concept . 45

8.5.1 Overview . 45

8.5.2 Implementing a new Device . 47

term project, July 2005

TABLE OF CONTENTS vii

8.5.3 PropertyProvider code inspection . 48

8.6 Flavours . 51

8.6.1 ABIBusStatus flavour . 51

8.6.2 ABIDeviceStatus flavour . 51

8.6.3 PropertyList flavour . 52

9 ABI Falcon Bundle 53

9.1 Overview . 53

9.2 Falcon Bus . 54

9.2.1 Falcon Presence Daylight Service . 55

9.3 Hardware control . 56

9.3.1 FalconCommunicator . 58

9.3.2 FalconDataListener . 60

9.3.3 FalconDevice . 60

9.3.4 FalconServiceImpl . 60

9.3.5 FalconDataDispatcher . 60

9.3.6 FalconDataLogger . 61

9.4 Libraries . 61

10 ABI Area Bundle 63

10.1 Overview . 63

10.2 Area updates . 65

10.3 AreaStatus flavour . 65

10.4 Area XML file . 66

10.5 Libraries . 66

11 ABI RBC Server Bundle 68

11.1 Overview . 68

11.2 Service Trackers . 70

11.3 Communication Subsystem . 73

11.3.1 Connection Listener . 73

term project, July 2005

TABLE OF CONTENTS viii

11.3.2 Connection . 73

11.3.3 MessageHandler . 73

11.3.4 Message . 75

11.3.5 IMessage Dispatcher and Message Dispatcher . 75

11.3.6 Message types . 75

11.3.7 Synchronous messages calls . 76

11.3.8 Dataflow summary . 78

11.3.9 Extendability . 79

11.4 Virtual producer . 80

12 ABI Remote Service Bundle 82

12.1 Overview . 82

12.2 Further notes . 84

13 ABI Discovery Service Bundle 85

V Appendix, Glossary and Bibliography 88

A Appendix 89

A.1 Remote Service Protocol . 89

A.1.1 Introduction . 89

A.1.2 Defined messages . 89

A.1.3 Remote Presence Service Message Packets . 90

A.1.3.1 connectpresence message . 90

A.1.3.2 getpresence message . 91

A.1.3.3 setpresence message . 91

A.2 Discovery Service Protocol . 92

B Glossary 93

term project, July 2005

List of Figures

3.1 Falcon System . 10

3.2 The Falcon Presence-Daylight Device . 11

3.3 Remote Control (RC) . 12

3.4 Property Concept - A Domain Model . 13

3.5 Client Server Model . 15

3.6 PC Presence Model . 17

3.7 Analysis Architecture . 19

3.8 Future solution . 21

4.1 System architecture overview . 24

4.2 Bus and device abstraction . 25

4.3 PropertyList exchange . 27

4.4 Areas hierarchy . 28

4.5 ABI RBC Server . 29

4.6 Remote Service Bundle architecture . 32

5.1 The RBC Message Format . 33

6.1 Architectural overview . 38

8.1 Sensor services overview . 43

8.2 Actuator services overview . 44

8.3 Bus service . 45

8.4 Property Concept . 46

8.5 Propertytypes overview . 47

ix

LIST OF FIGURES x

8.6 PropertyProvider . 49

8.7 ABIBusStatus flavour . 51

8.8 ABIDeviceStatus flavour . 51

9.1 Falcon Bus . 54

9.2 Device Communication . 57

9.3 Protocol Issue SSD1 . 59

9.4 Protocol Issue SSD2 . 59

10.1 ABI Area Overview . 64

11.1 RBC Server Overview . 69

11.2 DeviceSTCustomizer . 70

11.3 Wires to/from the RBC Server . 72

11.4 Communication Subsystem . 74

12.1 Virtual Bus . 83

13.1 Discovery Server Bundle . 86

term project, July 2005

List of Tables

4.1 ABI RBC Server Dependencies . 30

5.1 RBC Messages . 35

7.1 ABI System Bundles . 41

10.1 AreaStatus flavour . 66

11.1 Service Trackers . 70

xi

LIST OF TABLES xii

term project, July 2005

Part I

Introduction

1

Chapter 1

Introduction

1.1 Retrospection

Our first task was to develop an intelligent learning system that should be capable of controlling an illumi-
nation system based on wireless effectors and sensors.
The motivation took place upon a cooperation between the University of Applied Sciences Rapperswil and
a company called Feller AG that has been doing related research work in this field quite a while ago. Addi-
tionally they provided us with the necessary equipments such as the wireless devices (light effectors, presence
and daylight sensors).

Our Professor, Prof. Dr. Josef Joller indicated that it would be advisable to perform such kind of re-
searches in an environment that has already been configured and aligned for such kind of purposes. In an
incitement he pointed out that an ABI System has recently been developed that might help to solve at least
a chunk of our task since it is related and secondly the latter introduced abstract bus concept (See: [BG04a])
might be even possible to be adapted in our context as well.

1.2 History

Many research work is concerning about the integration of autonomous intelligence into a building in our
everyday life. Many attempts are trying to interact, improve user comfort and provide security in mod-
ern working and living environments. Here at the Institute of Neuroinformatics(INI) a couple of projects
have been performed that mostly were concerned in developing a System that should act with the environ-
ment through common devices like lights, window blinds etc. and senses from illumination-, temperature-,
radiation-, daylight-sensors and presence detectors. As a follow up each of the projects also tried to solve
if a building can be adaptively act intelligent. Intelligent in the sense that a building is changing in nature
from static structures of bricks and mortar to dynamic work and living environments that actively support
and assist their inhabitants ([RJD04]).
These new buildings are expected to behave intelligently. In order to do performance analysis of an intelligent
system in a real working and living environment, they need access to all sensors and effectors within rooms,
floors or even a whole building. All projects have been conducted at the Institute of Neuroinformatics (INI)
where they had the opportunity to interact with a given field bus (LON) that is capable to communicate
with all its connected sensors and effectors (See [TZ03a]).

2

1.3. ADAPTIVE BUILDING INTELLIGENCE (ABI) 3

1.3 Adaptive Building Intelligence (ABI)

Before digging into the OSGi based ABI System solution we briefly recap the actual state of affairs since
there were quite a few and might help to catch onto.
Basically two adaptive building intelligence systems (ABI Systems) have now been developed by several
term projects and diploma thesis. Evidentially each system turned out to be very unstable and sometimes
took unexpected actions and this after a couple of months of being tested. Neither system barely was able
to survive a month without having crashed. Evidentially the inhabitants that were using the OSGi based
solution were not satisfied with it.

A building is a very complex system, since it behaves from a computational point of view completely
nondeterministic. Raphael Zwicker, Jonas Trindler, Ueli Rutishauser and Alain Schaefer have developed a
multi-agent-system that they called DAI (See: [TZ03a], [TZ03b], [RS02]). DAI stands for Distributed Ar-
tificial Intelligence and basically represents an ABI System that is constructed out of agents, each of which
act independently and communicate indirectly with others about their goals and actions they take. Every
agent has its own field of responsibility, but to achieve the overall goal of controlling a building they have to
collaborate.

To retrospect the recently developed ABI System: The ABI System based on OSGi has been developed
from our predecessor, Patrik Brunner and Simon Gassmann (See: [BG04a]) and has been structured as a set
of agents that are software components that are mostly independent and autonomous. Each of these agents
pursue their own goals and cooperate with other agents whenever it is necessary. In the OSGi Framework,
agents have to be compared with services. Software components hereby represent a so called OSGi Bundle
that consists of a set of services.
In contrast to the DAI-based ABI System, the OSGi-based solution has rather been characterized as a cen-
tralized Software System solution. This means that most of the things rather concentrate in a single point of
failure whereas the DAI-based solution has been constructed as a set of distributed agents and might need
to consider multiple points of failures.

In outlook to our diploma thesis in October 2005 we try to combine our research work and adapt the
latter ABI system based on OSGi. Hence it is necessary to introduce their work to understand what the
open issues and needs are which have to be analyzed and satisfied first, before we can define and illustrate
our objectives (See section: 2.3) of our work.

1.4 Terms and definitions

For the sake of clarity we use the term RBC API to refer to the remote implementation of the API when
not explicitly stated otherwise (See [NB05c]).
Other terms and definitions are to be looked-up in the glossary (See appendix section: B)

1.5 Preconditions

This document presumes that that the reader is already familiar with the term OSGi and ABI and ABI
System. We also assume that the reader has at least read the previous term project ([BG04b]) and the
diploma thesis of Patrik Brunner & Simon Gassmann ([BG04a]).
Therefore we don’t recap and or provide any details about the OSGi Framework nor we cover any fundamental
ABI System aspects in here as well. Concretely speaking this means that terms such as: bundles, Services,
ServiceReferences, etc should not be a foreign word to you. For more details please consult ([OSG]) or
previous term projects and diploma thesis.

term project, July 2005

CHAPTER 1. INTRODUCTION 4

1.6 Document structure

This document is structured into five parts: An Introduction part: I, an Analysis part: II, an Architecture
part: III, a Design and Implementation part IV and an Appendix part that concludes of a Glossary and a
Bibliography chapter (See: V).

The first Introduction part basically summarizes the state of affairs and retrospects previously conducted
projects. The next part then analyzes the previously developed ABI System that has been completely im-
plemented using an OSGi Framework and outlines the issues that need to be addressed. In a sub-chapter
(See chapter: 3) we analyze the ABI System goals that we want to achieve.

In the following architecture part (See part: III) we then present our concrete solution to each of the
addressed proposition stated in chapter: 3. We illustrate which bundles have to be implemented and show
how they collaborate with each other in a low coupled way.

The design and implementation part (See part: IV) is then rather digging into the concrete realization
of each bundle in a comprehensible way in the sense that it provides a mixture between descriptive text,
UML diagrams and code snippets.

Finally we close up the paper with an appendix part that may provide additional information such as
certain protocol definitions.

We leave out any discussion and future work chapters since they have already been addresses by the analysis
section (See section: 3.10) as well as within the accompanying RBC API documentation [NB05c] that among
other things forecasts what needs to be done in the upcoming diploma thesis.

term project, July 2005

Part II

Analysis

5

Chapter 2

Analysis of the previous ABI System

2.1 ABI System issues

We recall that our task is to incorporate the wireless devices (so called Falcons) into the existing ABI System
based on OSGi.

As we were getting acquainted with the ABI System we noticed that most parts of the system were not
developed to be adaptable and neither they were stable and independent of each other. We have been realiz-
ing this as we were about to fit the wireless devices into the system and also when planing the development
of a graphical user interface application that actually should manage and configure the ABI System (See
section: 2.3).

When facing the fact that the ABI System has been fully implemented using bundles one might think
that the adaptability as well as the extendability are greatly preserved and ensured. Hereby the bundles
are comparably related to applications rather then regular packages as most applications have been imple-
mented with. Unfortunately we’ve noticed that momentarily this isn’t the case. Imagine having the task of
assembling a bunch of separate applications in a way that they should interact with each other but you can’t
really see the interaction going on between the required applications. Concretely speaking, when unrolling
the dependencies in the ABI System on can see the big mess we have inside. Especially with the usage of the
Wireadmin (See section: 2.1.1) that in the current context produces rather more hard ”wired” dependencies
between the services with the result that barely anyone is capable of keeping track of the entire system
anymore.
The flip side to this coin is that bundles in this context are praised to be developed independently and still
require each other in an invisible way.
Figure how such as system can possibly being maintained by a semi-yearly shift of the developers.

2.1.1 Wire Admin Issues

The Wire Admin represents an administrative service that is used to control a wiring topology in the
OSGi Service Platform. It is intended to be used by user interfaces or management programs that control
the wiring of services in an OSGi Service Platform. The Wire Admin service plays a crucial role in minimizing
the amount of context-specific knowledge required by bundles when used in a large array of configurations.
The Wire Admin service fulfills this role by dynamically wiring services together. Bundles participate in
this wiring process by registering services that produce or consume data ([OSG]).
The Wire Admin service wires the services that produce data to services which consume data. Hereby
producers and consumers get interconnected in a loosely coupled way called a wire. Generally speaking
producers are services that generate data intended to be used by consumers. In order to receive any data
generated by a producer corresponding services must be implemented that conform to those roles. When the

6

2.2. OSGI DISCUSSION 7

services have once been registered to the OSGi Framework, the Wireadmin is able to create a wire between
the services and allow the exchange to be taken place, provided that both parties provide the same kind of
flavour that should logically correspond to its requirements.
Basically one can say that the concept of the Wireadmin is quite similar to that one provided by the common
observer patter although additional features have been added such as the capability to persist wires that can
be re-initialized upon a crash or a bundle stop.

Apparently the concept of the Wireadmin must have been misunderstood since the flavours did not cor-
respond to any standard format and hence was causing heavy hard ”wired” dependencies between the
services and its bundles. Hard ”wired” in the sense that not every presence service can simply be seen as
a generic presence service that only provides a status that can be either true or false. Consider a specific
presence service that might provide additional features such as the capability to query a battery status or
may provide a frequently sent daylight value.
For such devices in particular it is mandatory to be aware of all provided features. For instance a battery
driven presence device might send its battery status when being low-powered and might give an extra hint
about its weak existence and hence would allow an application software to consider this option while keeping
track of it.

Specifically speaking a falcon presence-daylight device provides a combination of different sensors (day-
light and presence) within one entity. The challenge we got confronted with was how to distinguish between
the different data that must be recognized by a Consumer when not considering the option of parsing through
each different possible string that has been provided by each concrete device implementation. Evidentially
no such solution exists since we cannot derive from two different interfaces that prescribe the Consumer
marker interface.

2.1.2 Other Issues

Other issues were that static configurations were depending on the Lon Bundle ([BG04a]) in such an extent
that it was practically impossible for us to adapt this bundle and hence needed to postpone the support of
the lon bus into the diploma thesis and only consider the realization of the falcon bus (See section: 3) within
this term project.
Furthermore the ABI Area Bundle was totally confounded with an intelligent related part which should
frankly speaking be free and independent of any of such.
There would be a bunch of more issues that need to be addressed and refactored since nobody would be
capable to add any features to this ABI System and since it causes problems nobody can see through it.
One has to note though that our predecessors were in a big rush since they did everything from scratch and
even using a new technology ([OSG]) that needed to be learned first. The most severe part though was the
misleading usage of the Wireadmin (See section: 2.1.1).

2.2 OSGi Discussion

Although OSGi has emerged into a very powerful and adaptive system framework, it also has its liabilities.
Those negative forces need to be circumvented in a way that it does not effect the hot-plugging capabilities.
In order to recall why it is worth to apply an OSGi Framework in an adaptive building intelligence system
(ABI System) we itemize some advantages first.

Advantages:

• The OSGi service platform specification delivers an open, common architecture for service providers,
developers, software vendors, gateway operators and equipment vendors to develop, deploy and manage
services in a coordinated fashion ([OSG]).

• It enables an entirely new category of smart devices due to its flexible and managed deployment of

term project, July 2005

CHAPTER 2. ANALYSIS OF THE PREVIOUS ABI SYSTEM 8

services.

• OSGi reduces the incompatibility problems of legacy systems. The key is the common service interfaces
within the OSGi service framework

• The platform designed by OSGi is open and scalable for the delivery of new services. This platform
enables manufacturers and service providers to bridge the gap between all common standards and
vertical markets and to communicate with the end consumer via one single service gateway platform
specification [cellular.co.za]

There are also a couple of liabilities or violations that need to be prevented when considering an OSGi
Framework. Some of them really need to be addressed to accomplish our objectives (See section: 2.3).

• Development: The art of programming is partly changed in the way that it might restrict the
developers in a form of a schema which might impact the developers design skills in a negative way.

• GUI Problem: Evidentially a graphical user interface application is not meant to be developed as a
separate bundle inside an OSGi Framework since a window closing would cause the entire system to
be shut down. So we have to think of a client server model (See section: 3.5) rather then a bundle
solution. Frankly speaking this is even a more beneficial approach as we identify later: (See section:
3.5 and section: 3.9 for more details).

• Deployment: Building OSGi conform bundles can be quite tedious when done by hand or with ant
solutions.

• Maintenance: A system that is composed out of bundles must be carefully designed in order to
prevent a system to be difficult in maintenance.

• Dependencies: Each bundle must comply to a standard in order not to cause ”hard-wired” depen-
dencies. The interaction between the bundles must be adaptive and low coupled. A bundle should
not require to possess any conditional knowledge of other bundles which do not conform to a generic
interface or principle.

• Initial skill adaptation training: When solving the forces stated above we can enhance the time
that other developers would need to get acquainted with the System.

2.3 Our Objectives

The actual term project intends to refactor and stabilize the design of the existing ABI System which has
been developed in the diploma thesis of Patrick Brunner & Simon Gassmann ([BG04a]). The negative forces
stated above (See section: 2.2) need to be circumvented in a way that it does not effect the hot-plugging
capabilities.

Further tasks are:

• To develop a new bus that includes the support of wireless devices (so called Falcons).

• The development of Graphical Configuration Utilities

• Management of the system

• Provide tutorials and howto’s that facilitates further development practices.

term project, July 2005

http://www.cellular.co.za/technologies/forums/osgi.htm

Chapter 3

Analysis of the new ABI System

3.1 Introduction

In this chapter we chiefly introduce how we counteract the issues that have been identified in section: 2.2.
Further we cover some additional topics such as some details about the falcon devices (See section: 3.2) and
discuss some future aspects since they might have an impact in our architecture and the design as well.
We also cover some fundamental aspects that have been covered in section: 3.9 that might be worth to take
a look at.
Section: 3.6 additionally briefly outlines that we might need to consider advanced presence detectors since
evidentially the ordinary ones are not well suited for most environments (See also: [TZ03b]).

3.2 The Falcon devices

According to the bus concept that has been introduced by our predecessors ([BG04a]) each device-set such
as the falcon device-set needs to implement a separate bus. The reason why such a distinction has been
made is because the concept presumes that each device-set is controlled by some kind of controller. In the
lon bus this happens to be a gateway called LNS Server. The Falcon Communicator (See section: 3.2.1) as
you will see represents a similar device that communicates with its devices using wireless instead of the lon
technology.
Hence one can simply say that each bus basically implements a proxy that replicates such a controlling entity
in the sense that it should provide a way to connect and disconnect the bus and furthermore implement
methods that allow any device to be registered and deregistered to respectively from the bus. In summary
one can say that each bus provides some kind of door to its devices.

Section: 3.2.1, 3.2.2 and 3.2.3 describe the device capabilities and outlines some undocumented features.
For more technical documents consider the following papers: ([EAS04a], [EAS04c], [EAS04b], [AG05],
[VIS99], [TAO03], [TAO01], [OPT05], [WIR05]).

In order to get acquainted with the devices some tools have been developed by Urs Schlegel (See: [FAL]).

Some fundamental research ideas and simulations might also be of interest: (See: [Sch04]).

Figure: 3.1 illustrate the equipments that have been used in the falcon system.

9

CHAPTER 3. ANALYSIS OF THE NEW ABI SYSTEM 10

Figure 3.1: Falcon System

3.2.1 The Falcon Communicator

Falcon devices refer to wireless devices that are interconnected with a so called Falcon Communicator that
represents a receiver that serves as a central communication station between each interconnected falcon
device and a PC-Client. In order to communicate to the devices the Falcon Communicator provides a RS232
connector that can be used to either send or receive commands.
Technically speaking the Falcon Communicator concludes of an Easy-Radio ER900TS Transmitter and an
ER900RS Receiver. The ER900TRS transceiver incorporates an ”Easy-Radio” technology that provides
high performance that can control radio devices that can transfer data over a range of up to 250 meters Line
Of Sight (LOS).

3.2.2 The Falcon Presence-Daylight Device

The presence and the daylight is measured by a wireless battery powered presence detector and an accom-
panying daylight sensor.
Unlike the separate lon ambient daylight and the lon presence sensor, the Falcon presence daylight provides
a combination of the two. At the moment the device is programmed to deliver new daylight and presence
information when either measuring a light delta of 10% to the previous one or when detecting a presence
change. Additionally this devices provides keep-alive messages which are broadcasted hourly.

It’s important to note that this device generally does not support any command-set that would allow to
concretely query for any specified device information such as the daylight or the presence value. The reason
of this is that the device is usually acting in passive-mode since its trying to save energy whenever possible.

term project, July 2005

3.3. REMOTE CONTROL (RC) 11

This is due to the fact that this device is battery powered and hence would consume to much of power when
serving twenty-four-seven.

However there is one command that can be initiated only upon receiving the daylight and presence value
pair that is automatically sent as explained above. So in this special case we are allowed to initiate a battery
requests since the device is able to process the query at this short moment. It would’t work though when
performing requests in an ad-hoc fashion. So we might need to consider to send this command right after
when receiving any device information. The same applies for the hold-time that can be configured that
basically serves as filter. More Information about the underlying protocol specification ([AG05]).

Figure 3.2: The Falcon Presence-Daylight Device

3.2.3 The Falcon Light-Actuator

The actuator is capable of switching any hooked-up electrical device i.e. A light upon receiving a specified
command that has been defined by the underlying protocol specification ([AG05]).

In contrast to the Falcon Presence-Daylight Device (See section: 3.2.2) this device does provide a com-
mand set that allows the actuator to change its state. Although you cannot query the state of the actuator
directly since there is no such command that would support this. On the other hand as soon as the actuator
state has been affected you will be receiving a feedback message about the changed state.

3.3 Remote Control (RC)

Next to the devices and the Falcon Communicator the falcon system also provides a Remote Control (RC)
(See figure: 3.3) that can be used to manually switch on and off the actuator (In example a hocked-up
light). The remote control is just an additional feature that can be used of a regular wall light switch
instead. Whenever the RC is being used the falcon communicator will be notified about it since the RC
and the actuator are capable to directly communicate with each other without having to involve the falcon
communicator in the first place. Hence the falcon communicator will let us know about this incident and

term project, July 2005

CHAPTER 3. ANALYSIS OF THE NEW ABI SYSTEM 12

simply forward the message as well. You can convince yourself by by using one of the tools mentioned above
(See: [FAL])

Figure 3.3: Remote Control (RC)

3.4 Property Concept

In order to counteract the issues (Dependencies and Maintenance) that have already been identified in
section 2.2 we designed something more generic and practical. Something that facilitates the entire ABI
System and even impacts any distributed client applications (See section: 3.5 and section: 3.9) positively.
For this purpose we developed a small domain model that reflects the environment in which any further
development activities may take advantage of.

Every device (physical or virtual) has a set of properties. A Property is actually just a tag value pair sim-
ilar to that one provided by the Java API. Additionally though we supply other attributes to the property.
Namely, we consider a property as readable and writeable. This is necessary since we don’t know if addi-
tional devices or buses are added in the near future. And in order to provide an independent representation
format such a concept was a necessary. Imagine a client software would need to know each specific supported
command in advance. This would be nuts since nobody would like to rewrite any client application (See
section: 3.5 and section: 3.9) or other even bundles which need to know about each specific feature of a

term project, July 2005

3.4. PROPERTY CONCEPT 13

Figure 3.4: Property Concept - A Domain Model

device that might be plugged at runtime.

The benefit of this approach is that the properties, the property provider and the property type can now
be defined in the ABI Core ([BG04a]) and are hereby detached from any concrete implementation.

So if any concrete device supports additional features it can simply add its features to its property provider
since it is inherited from the property provider that manages the added properties and hereby allows a
generic list of properties to be exchanged to any party. i.e. We can exchange such kind of properties in a
list and send them to remotely connected clients or even across wires provided by the Wireadmin ([OSG]).
Consumers as well as Producers are then capable to simply read out the property-list and see what kind of
properties any concrete device may support.

In order to completely define a property we associated each property with a unique PropertyType. A
PropertyType can hereby be represented by a set of concretely supported data types such as IntegerType,
DoubleType, EnumType, etc.
This was crucial since a plain property value would be useless when not having the opportunity to acquire
more accurate information about a specific Property. Quite often a Property value even needs to be
within a specified range to be valid. Furthermore an intelligent agent actually even requires such kind of
information in order to be capable to scale that value to some useful double value since not every device is
providing the same scope of property value.
For instance a falcon device Property might provide a daylight value that needs to be a value between 0
and 127. So an appropriate min and max value might be helpful to define its validation schema or range. If
we go further let’s say an EnumType would need to check if the value string contains one of the values such
as ON or OFF that have been defined by a device property.

term project, July 2005

CHAPTER 3. ANALYSIS OF THE NEW ABI SYSTEM 14

Basically one can compare the entire property concept (including) the PropertyType with a small mid-
dleware customized for this kind of purpose. It defines a small set of an IDL in order that we know what
kind of properties, each Property provides. For instance: A light might be able to be switched OFF and
ON. Hence we provide the custom tags: writeable, readable and a set of predefined types (IDL) to define a
property. With that simple locomotive a bundle or any distributed client application (See section: 3.5 and
section: 3.9) can easily visualize the properties without having to know about the concrete device features
in the first place. In particular GUI application can benefit from this concept since they can easily visualize
the properties.
For instance:

• A light switch can be visualized, since it’s writeable and can therefore be illustrated using a combobox
since it has been defined as an EnumType or BooleanType.

• A presence sensor might be visualized using a label since its not writeable but readable.

Across the introduction of the property concept a new door has been opened. Namely we can now pull the
strings together in the sense that a distributed client application (See section: 3.5 and section: 3.9) can now
benefit from this concept also. Concretely speaking this means that an API can be developed that provides
some sort of application layer that agents might be able to use instead of needing to know about the entire
ABI System. So we can strike a familiar path that has already been applied in the previous distributed ABI
System ([TZ03b], [TZ03a],[RS02]) again.

3.5 The Client Server Model approach

3.5.1 Overview

In order to counteract the graphical user interface issue that has already been stated in section: 2.2 we
designed a client server model that considers a custom application layer protocol that defines a set of
messages to be used when exchanging information between the ABI System and any custom distributed
client application (agents) that need guaranteed reliable transmission of data. One major use of a custom
protocol is to enable applications to retrieve changing device information and on the other hand commands
which can be executed by a server similar to remote procedure calls (RPC). Hypothetically speaking a server
can possibly be implemented and packed into a separate bundle within the OSGi Framework. Additionally
the message protocol should further provide a standard that all distributed client applications need to adhere
when communicating to the ABI System. The concept is depicted in figure: 3.5.

3.5.2 Distributed System Solutions

While there are several distributed object schemes that can be used within the pure Java environment, we’ll
cover a couple of solutions that we consider as a serious option for developing our distributed application
model. These are:

• RMI

• SOAP

• A proprietary solution

We have following requirements that one of the solutions need to comply to.

• Client server based architecture

• The entire system should be completely network and platform independent

term project, July 2005

3.5. THE CLIENT SERVER MODEL APPROACH 15

Figure 3.5: Client Server Model

• New clients should be added and removed from the system dynamically

• Clients should be able to be implemented in any programming language

• The server should be capable of sending messages to clients as well

• The applied solution should be something that can be easily installed and maintained

• Something practical and handy

All solutions have their advantages and their limitations, which we’ll have a more detailed look at (See
section: 3.5.2.1,3.5.2.23.5.2.3)

3.5.2.1 RMI

Remote Method Invocation (RMI) is a technology that allows the sharing of Java objects between Java Vir-
tual Machines (JVM) across a network. An RMI application consists of a server that creates remote objects
that conform to a specified interface, which are available for method invocation to client applications that
obtain a remote reference to the object. RMI treats a remote object differently from a local object when the
object is passed from one virtual machine to another. Rather than making a copy of the implementation
object in the receiving virtual machine, RMI passes a remote stub for a remote object. The stub acts as
the local representative, or proxy, for the remote object and basically is, to the caller, the remote reference.
The caller invokes a method on the local stub, which is responsible for carrying out the method call on the
remote object. A stub for a remote object implements the same set of remote interfaces that the remote
object implements. This allows a stub to be cast to any of the interfaces that the remote object implements.
However, this also means that only those methods defined in a remote interface are available to be called in
the receiving virtual machine [Java RMI & CORBA].

However, RMI also has the disadvantage of being relatively slow and not very fault-tolerant. Remote

term project, July 2005

http://www.javacoffeebreak.com/articles/rmi_corba/

CHAPTER 3. ANALYSIS OF THE NEW ABI SYSTEM 16

methods are synchronous, which can freeze applications when the network is down. That makes RMI un-
suitable for applications that need to abort communication when stalled. Although this deficiency can be
worked around with the use of threads, it does not possess the flexibility of using sockets with timeouts and
non-blocking I/O. Then again, non-blocking I/O is not possible with Java, so this has little bearing.

RMI is more suitable for use in the configuration part of your client application because configuration
utilities are not fault-sensitive and have little need for optimized network communication. The monitoring
part of your application is very likely unsuitable for use with RMI if it is a constantly running monitoring
system that requires some level of real-time information delivery. Using a custom protocol over sockets will
yield better results (See section: 3.5.2.3). However, if the monitoring is only single snapshot monitoring,
where a user observes the status of the device only occasionally, then RMI is a good implementation ap-
proach. One other issue is that RMI is quite impractical to install and to maintain as it would be with a
regular socket connection.

3.5.2.2 SOAP

The word SOAP stands for Simple Object Access Protocol. SOAP was originally developed by Microsoft,
IBM, DevelopMentor and UserLand Software and was then recommended by Internet Engineering Task Force
(IETF). SOAP is used to communicate between applications via HTTP using XML or extensible Markup
Language. Soap is a protocol that is neither a distributed object system nor an RPC system or even a Web
application, but a messaging format for machine-to-machine construction. Soap applications communicate
with each other over the internet [Simple Object Access Protocol].
Some of the features worth noting are:

• Uses standard internet HTTP.

• Uses XML to send and receive messages.

• Platform independent

• Language independent

• A protocol for exchanging information in a decentralized and distributed environment

The advantages of SOAP over these protocols are that SOAP uses XML and is text based, whereas the
others are dependent on object-model-specific protocols. Moreover they are not adaptable to the internet
whereas SOAP uses the HTTP protocol.
In order that SOAP messages can be interpreted, a SOAP server is needed such as the Apache Axis ([Apa]).
The apache Axis however is basically a SOAP engine, a framework for constructing SOAP processors such
as clients, servers, gateways, etc. Therefore it requires all those components to be installed and supported.
Additionally it fails in the requirement to support servers to execute remote procedure calls on the client
machines. Although it would be possible since a client machine can also setup such a framework. But
this would go beyond the scope of a decent installation and would be hard to get to know for third party
developers as you will see later (See section: 3.9). As a short summary one can state a SOAP solution as
follows:

Advantages:

• The main advantage is that it is a well-known and tested web service solution supported by i.e. the
Apache foundation

Disadvantages:

1. It is not a tailored solution. As a consequence, it could not be the optimum for concrete problems

2. It needs a SOAP engine that supports an interpreter in order that SOAP messages can be recognized.

3. It needs high resources to run

term project, July 2005

http://www.w3.org/TR/soap/

3.6. ENHANCED PRESENCE DETECTORS 17

3.5.2.3 A proprietary solution

A proprietary solution is clearly adaptive and can be designed to satisfy any required needs. Although
following disadvantages might reflect the dark side of this solution a bit.

• A home made solution might leak of the fact of not being aboundingly tested

• Expensive in time to be developed

Since we are already familiar with developing proprietary solutions and might benefit in the sense that we
might be able to apply already implemented solutions into this context we choose this as our communication
technology.

3.6 Enhanced Presence Detectors

Each presence sensor that we are currently working with rather correspond to regular movement detectors
than presence detecting devices since they are only capable of detecting movements of persons within a
certain range. We have been realizing that if movements are very sparse or the sensors have no intervisibility
with the persons itself. Thus each of the sensors were interpreting the area as unoccupied.
Of course it is possible to smooth the sensors in a certain extend but evidentially this wouldn’t be very
practical either since it is possible that a person is sitting at his desk while having no direct contact to the
presence sensors at all.
According to the term project of Raphael Zwicker and Jonas Trindler ([TZ03a]), they were having issues
with the normal presence detectors as well.
The latter solutions introduced a so called PC Presence sensor that has been developed by Tobi Delbruck
(tobi@ini.phys.ethz.ch). The sensor serves as an additional presence detector that can be run as a thin client
running on different workstations. The sensor might even serve as a personal presence detector since it tracks
down the users mouse motions and keyboard hits.

Speaking in advise we need to consider such an option in our OSGi based ABI System as well. So the
ABI System would need to consider to provide a second server that is capable of receiving such kind of
information also.

Figure 3.6: PC Presence Model

term project, July 2005

CHAPTER 3. ANALYSIS OF THE NEW ABI SYSTEM 18

3.7 Server Discovery Service

When different servers are being plugged and are needed by the ABI System and client applications, i.e. the
PC Presence server or the Remote Server it might be worth and useful to consider a discovery service that
provides the capabilities of the entire ABI System in form of multicast datagrams. Hence we would achieve
a less coupling between distributed client applications and the ABI System.

In order to incorporate a discovery service, we might need to consider to wrap this service into a sepa-
rate bundle since it doesn’t actually depend on any other services. So if any server want’s to benefit from
this feature it can do so by registering a ServiceTracker (See: [OSG]) that informs about the discovery
bundle existence.

3.8 ABI Area bundle

The ABI Area refers to the issue already stated in section: 2.1.2. An area in our context should rather
serve as a container that keeps count of all devices dedicated to the representing environment such as a
room. It’s purpose should be to provide a consistent place where such areas are being stored. Especially
important when multiple clients access the different areas (See section: 3.5 and section: 3.9). Operations
such as adding or removing a device and modifying other things are meant hereby. Furthermore we think
that an area should be responsible of having the knowledge of each specific device location rather then the
device itself (See [BG04a]). Additionally a device should not be tested if being registered since we don’t
want to lose any mapping relations.

3.9 General Aspects

In a first phase we want to develop a system that provides a set of services that can be used by different
client applications or even bundles. In particular we want to resolve the dependencies between each bundle
to be lowered and reasonably structured. Otherwise we would restrict the adaptability and the extensibility
of the entire ABI System. The ABI System needs to be developed in such a way that other developers don’t
necessarily need to know the entire system when adding some functionality. To achieve such a system we
require:

• A clear system boundary that is well documented

• Interfaces for all supported services to be well defined

• A generic principle for exchanging device information (as already mentioned in section: 3.5.1) so that
underlying specific devices can be developed and are unconcerned about any other services that might
consum their data.

• Services to be remotely implemented and supported by the ABI System in providing servers that allow
an addressable complement. Examples of such are the PC Presence Server (See section: 3.6)

• When enabling remote services, a discovery services should centralize or ”bundle” all services that the
ABI System may provide.

When keeping this agreements and not allowing any violation to be taken place we should achieve a system
that can be kept low coupled, stable, easy to maintain, expandable, easy to get acquainted with and most
importantly we can reduce the point of failures to a minimum.

There is still one issue that needs to be addressed:
When displacing some ABI System functionality to distributed client applications we might need a stan-
dardized API that should be capable of taking down the communication part by each client application.

term project, July 2005

3.9. GENERAL ASPECTS 19

Furthermore it might be expanded in providing an API Specification that standardize how concrete API
implementation need to be implemented in order to comply to its requirements. Most of the features might
be addressed by an underlying protocol specification (See section: 3.5.1).

The purpose of such an API is to simplify any future development of custom client applications associ-
ated with the ABI System in the sense that it provides a compact application layer standard which should
ultimately be implemented by a concrete API that implements the protocol requirements. This concrete
implementation should provide the capability to remotely communicate to the ABI System in such a way
that developers don’t need to put up with the the protocol anymore. In other words it should hide any
required background activities such as communicating to the ABI System (See figure: 3.7).

The benefit of such an API should be that any client application should no more depend on the com-
plex ABI system anymore. Instead any distributed client application should be capable of controlling the
ABI System in a distributed kind of fashion. In order to accomplish this we need two things to be designed
and developed:

• A protocol that is responsible for exchanging ABI System relevant data such as device information,
etc.

• An API standard and a corresponding reference implementation that abstracts or reproduce the entire
ABI System that distributed client applications may use as their underlying application layer.

Figure 3.7: Analysis Architecture

term project, July 2005

CHAPTER 3. ANALYSIS OF THE NEW ABI SYSTEM 20

3.10 Future considerations

3.10.1 Providing two API’s

In the future we need to think of providing an implementation of the API that is capable of supporting any
client applications to be installed and executed as a separate OSGi bundle as well. In other words, with an
additional implementation of the API specification we should allow any client application to be either turned
into a separate bundle or to be executed in a separate runtime environment, means to use a remote API
implementation instead. The advantages of such an approach is to reduce the overhead that a distributed
system commonly brings along.
Nevertheless for the majority a distributed client application can be a benefit in all its particulars. Especially

when dealing with Graphical User Interface applications which are evidently not intended to be installed
as a bundle since a window termination would cause the entire OSGi Framework to be terminated. An AI
application however might benefit when being installed and utilized as a bundle rather when being run as a
separate distributed client application.
For such applications in particular when incorporating intelligence control this is inevitably a better suited
solution because bundles still do perform better then a client application. The benefit of this approach is
that we can in one hand reduce the complexity and braking down to one single point of failure while at the
same time advancing the development of applications since they can can be developed and tested completely
independent and thus facilitating and satisfying both needs.
Depending on the client application such a possibility might be useful or even needed. Imagine an AI
application that would suddenly stop to control an area upon a network failure. Nevertheless for the majority,
a distributed client solution should fit perfectly. For an illustration see: 3.8

term project, July 2005

3.10. FUTURE CONSIDERATIONS 21

Figure 3.8: Future solution

3.10.2 LON bus integration

It should be noted that the LON technology will currently not be supported by this term project since the
ABI System needs to be completely restructured and is hence no more possible to be integrated. The LON
bus and all its devices are planed to be developed in the upcoming diploma thesis.
This might sound very disappointing and incomprehensible but this is really necessary since we cannot de-
velop any possible intelligence without providing a stable ABI System in the first place. Secondly we want
a System that doesn’t need a couple of months to get acquainted and familiar with.

In a following diploma thesis, this term project will be expanded to a full functioning OSGi based ABI
system. Which will benefit from the previously developed platform in the sense that it rather needs to
concentrate in the development of different learning methodologies which are to be recorded and monitored.
Additionally as mentioned the LON Bus should be integrated as well. But since the system should have
been well designed and adaptive this shouldn’t take that long.

term project, July 2005

Part III

Architecture

22

Chapter 4

ABI System Architecture

4.1 Introduction

To develop an adaptive and universal ABI System we have to define the boundary of the system. There are
many different aspects and influences which characterize the architecture of such a system. This previous
part point out the main influencing factors how such a system can be accomplished. The task of this chapter
is to design the system as it has been suggested from the previous chapter.

We illustrated, that there are many different aims and requirements. Some of them are dependent and
some independent on others. For a better understanding and to breakdown the problem, we want to divide
the framework in small software units called bundles. Each bundle is responsible for one specific part of the
whole system. Similar to conventional software design concepts we mostly use OSGi prescribed interfaces
and develop a core system that addresses the problem of the generality so that we can reach low coupling
between the bundles but altogether it is still one software.
To a certain degree we design these bundles to be developed as independent software components. In order
to achieve this a bundle needs to be developed that represents the core of the ABI System that certain
bundles need to adhere in order to be integrated in the ABI System. This previously developed core bundle
([BG04a]) has been more or less adapted from our predecessors. Additionally though extended with the
property concept manifested in the analysis part (See section: 3.4).

4.2 System Components overview

To keep the ABI System manageable, we divide the whole system into smaller subsystems. Thereby each
subsystem can be composed of a set of bundles, each of which conceive the difficulties and provide a suited
solution to comply its subsystem.
We currently defined the following subsystem in our ABI System:

• Bus and device abstraction: Is part of the ABI Core bundle and has been partly adapted from ([BG04a])

• Structure abstraction: Has been implemented by the ABI Area bundle.

• Remote control : Has been realized by the RBC Server bundle.

• Remote service: Is part of the Remote Service Server bundle

• Discovery Service: Comprises of the ABI Discovery bundle

23

CHAPTER 4. ABI SYSTEM ARCHITECTURE 24

Figure 4.1: System architecture overview

4.2.1 Bus and device abstraction

The bus and the device abstraction concepts have already been implemented and applied in previous projects
(See: [BG04a] and [TZ03b]). Just to refresh one’s memory:
The bus abstraction defines a common access interface for different physical or logical bus systems. For
instance for bus systems such as the LON-Bus or the Falcon-Bus.

The device abstraction allows a standardized access to all concrete bus devices. Each device type has
its own specialized bus-specific implementation. All idiosyncrasies of a device are handled in the specific
implementation of the device type.

term project, July 2005

4.2. SYSTEM COMPONENTS OVERVIEW 25

However neither of them considered that each device may provide different features. Even though one
might think that a simple presence device would only represent a device that logically provides data that im-
plies if someone is present or not (true or false). Speaking in experience this isn’t true since any device might
support additional features such as a battery status or even a daylight value (See section: 3). Depending on
the usage such additional features can be quite valuable to know and to provide. Imagine a battery driven
presence device that would suddenly stop to respond upon being low-powered. Hence we would not be able
to reliably determine the device status anymore. We can’t just simple set the presence status to true since
the device could have went down right after it had been indicating presence. Therefore the system would
assume presence although it would’t be true.
Accordingly we introduced a new concept that has already been depicted in the analysis part (See section:
3.4). Hence we don’t cover this in here again. It is just important to know that the ABI Core bundle provides
this feature since every concrete device of any concrete bus may make use of it (See figure: 4.2). Specifically
speaking they must since services such as the RBC Server (See figure: 4.1) and others actually require this
concept to be strictly adhered in order to benefit from the concept when reading out any kind of properties
associated with a device when i.e. updating any distributed clients.

The boundary of the system can be defined as that each bus system should be realized by a separate
bundle. i.e. The falcon bus has been realized by a bundle called ABI Falcon and basically has been imple-
mented as a hardware specific controller. Additionally all devices that belong to a specific bus should be
implemented within this bundle also. As one can see in figure: 4.2 a concrete device should implement its
specific device service interface and should secondly be derived from the PropertyProvider since all device
properties should be provided in form of properties rather then independent strings.

Figure 4.2: Bus and device abstraction

term project, July 2005

CHAPTER 4. ABI SYSTEM ARCHITECTURE 26

4.2.1.1 Property Provider

The property provider is an abstract class that all devices need to extend when willing to benefit from the
property feature. The PropertyProvider itself has been realized with the Wireadmin concept. Hence it
implements the two interfaces called: Consumer and Producer ([OSG]). It stores properties of a device and it
is responsible to perform necessary updates on the wires ([OSG]): i.e. When receiving data from the devices
and vise-versa to obtain update request from others(i.e. From distributed client applications), provided that
the property is writeable. This class then initiates appropriate changes to the physical and virtual devices
or feed the client with new data upon device property changes. i.e. Present sensor goes from false to true.

To change properties to the physical or virtual devices, this class provides an abstract method called
propertyChanged() that all devices i.e. FalconLightServiceImpl need to implement.

4.2.1.2 Basic functionality

Generally a concrete device initially adds (addProperty()) (See figure: 4.2) its provided features in form of
properties to the PropertyProvider.

After having registered all necessary properties the PropertyProvider is capable to either receive noti-
fication messages (See section: 4.2.1.1) across the wire or update all consumer wires. For instance: When a
presence device receives a new presence status and will simple set the corresponding property that needs to
be changed. Logically the PropertyProvider will update its wires and any connected complement will be
receiving a common flavour called PropertyList (See: 4.2.1.3 that concludes of a set of properties. With
this principle we can make sure that no concrete device directly exchanges any information on its own.

4.2.1.3 Modification Notification

According to section: 4.2.1.1 and 4.2.1.2 the common flavour that is being used to exchange device informa-
tion is called PropertyList. The PropertyList is simply a list that contains a set of properties dedicated
to a specific device (See figure: 4.3).
Depending on the device type common flavours are exchanged among bundles and later even flatten down
in order to allow a text based property exchange (See chapter: 5) for distributed client applications (See
chapter: 6) which reproduce the entire concept in its own independent platform (See section: 5 and 6).

4.2.1.4 Summary

In summary we can say that the bus abstraction operates as a gateway between hardware specific bus systems
which might apply different technologies, such as the LON or wireless technology. In order to realize a new
bus system that can be plugged to the ABI System in an ad-hoc fashion, a new concrete bundle must be
implemented that must conform to the provided interfaces given in the ABI Core bundle. The concrete
bundle should further implement the capabilities to communicate to the underlying hardware bus or virtual
bus (See section: 4.2.4).
This is necessary because several different devices may coexist within one building. An important aspect
is that each device type has its own idiosyncrasies and an its dedicated bus that addresses it. Therefore
it is expedient to consider that each device should implement a property provider that standardize and
defines a general concept that can later be used to exchange properties between bundles or even distributed
applications.

term project, July 2005

4.2. SYSTEM COMPONENTS OVERVIEW 27

Figure 4.3: PropertyList exchange

4.2.2 Structure abstraction

The structure abstraction(area abstraction) represents a structured view to the available devices. Currently
it has not been built hierarchically since we only consider separate rooms to be controlled. In the future
we might consider a structure that is capable to be represented as a tree of clusters whereby each cluster
can contain several devices (See: [TZ03b]). However with an appropriate naming schema one might not
even require any hierarchy and can nest whenever it is required 4.4. The fact that a building structure is
obviously not constant but rather dynamic in the sense that the devices within a structure may dynamically
be removed, added, replaced or moved. Hence the structure abstraction must provide a further task and this
is: It must administer the dynamic behavior of an environment. A further note is that there should be a
way to persist the structural (area) information in some way in order to enable boot-strapping. Concretely
speaking this component should never loose its content upon framework termination, etc.

The bundle that is responsible for storing and keeping track of any structural (area) information in our
context is represented by the ABI Area bundle. At the first glance it might look awkward that the ABI Area
bundle doesn’t depend on the core and hence neither to any concrete bus bundles. This is because we don’t
consider devices to be registered when being added to an area.
The only collaborator of the ABI Area is the ABI RBC Server bundle (See section: 4.2.3) that actually
requires the ABI Area bundle to be even launched since the server currently provides the only hatch to all
provided bundle services.1

1In the future this will be extended according to section: 3.10

term project, July 2005

CHAPTER 4. ABI SYSTEM ARCHITECTURE 28

Figure 4.4: Areas hierarchy

4.2.3 Remote control

We recall that Remote control is accomplished by the ABI RBC Server bundle. Remember that we talked
about a custom application layer protocol that should prescribe how messages are exchanged between the
server and any distributed client application? This section discusses the server part as far it is necessary.
More details about the server implementation is provided in the appropriate design section. The entire idea
is depicted below in figure: 4.5. You might be unfamiliar with the acronym called RBC API ([NB05c]). So
for the sake of simplicity you might want to read up about the RBC API beforehand (See chapter: 6). This
might apply for the RBC Protocol ([NB05b]) as well (See chapter: 5).

4.2.3.1 Basic functionality

Basically one can say that the server is responsible for providing remote access to the ABI System. As
one can see the server clearly benefits from the property concept because messages can now be defined in
a generic way also. So we don’t need to put up with any concrete device since we can now rely on the
properties instead. It would’t make sense to cover the entire server functionality in here because this would
go beyond the scope of this documentation.
Broadly speaking we implemented the entire features prescribed by the RBC Protocol specification (See
figure: 4.5 and chapter: 5)

4.2.3.2 Dependencies

The ABI RBC Server bundle momentarily is depending on three different bundles (See figure: 4.1). Each
collaborator is described in table: 4.1.

One additional remark can be said about the ABI RBC Server. No other bundle does depend on the RBC

term project, July 2005

4.2. SYSTEM COMPONENTS OVERVIEW 29

Figure 4.5: ABI RBC Server

Server since it actually doesn’t provide any services to other bundles. Of course distributed client applications
do depend on the ABI RBC Server in order to be capable to communicate to the ABI System.

4.2.3.3 Communication Subsystem

The communication subsystem is written to be reusable. In order to improve the re-usability, it is split into
multiple components that can be exchanged, if needed.
The communication subsystem is responsible for transferring control and information messages between the
client and the server.
Because the entire communication subsystem concept is quite generic it has been implemented in several
variations. So other subsystem such as the ABI RBC Server and even the RBC API ([NB05c]) take advantage
of this concept also. A general and overall description are given in the design part (IV)

See the protocol specification for details on the messages and their format (See chapter: 6).

4.2.3.4 Application Layer Protocol

As mentioned in the previous sections the common application layer protocol that has been used is called
RBC Protocol. RBC stands for Remote Building Control and prescribes a standard that need to be adhered
by both parties (Client and Server). In order to enhance the maintenance and to give the occasion to continue

term project, July 2005

CHAPTER 4. ABI SYSTEM ARCHITECTURE 30

Bundle Dependency Description
ABI Area bundle The ABI Area bundle provides a service that allows remote

clients for instance to create and delete areas. Hence the
server requires this bundle in order to access the service
upon receiving any area messages (See chapter: 5). In or-
der to exchange such kind of area information we provide a
separate flavour called AreaStatus. The AreaStatus flavour
contains a bunch of different area information. To give a
practical example: When a new device has been added to
an area the bundle will notify the ABI RBC Server bun-
dle about this incident. The information can then later be
broadcasted to other distributed client applications simi-
lar to ABIDeviceStatus (See below). More details can be
obtained from the protocol specification (See: [NB05b]).

ABI Core bundle The ABI Core bundle is needed because this bundle is the
only bundle that provides some kind of virtual bus that
interconnects all available buses within the ABI System.
Specifically speaking it’s the service called BusMultiplex-
ingDriver that provides this capability to provide such in-
formation. Hereby we distinguish between two different
type of update messages. Each of them provide two sepa-
rate flavours since they make use of the Wireadmin ([OSG]).

• ABIBusStatus: The ABIBusStatus flavour is required
when sending changing bus information i.e. When a
bus has been either plugged or removed. More details
can be obtained from the protocol specification (See:
[NB05b]).

• ABIDeviceStatus: The ABIDeviceStatus flavour is re-
quired in particular when sending changing device in-
formation i.e. When a device has been either plugged
(registered) or removed(deregistered). More details
can be obtained from the protocol specification (See:
[NB05b]).

So this is crucial for the server to receive such kind in-
formation from the core in order to broadcast the received
information to all currently connected distributed client ap-
plications (See figure: 4.5) which then have the ability to
replicate a consistent small ABI System on their own (See
RBC API [NB05c]).

ABI Discovery Service bundle Among other servers this bundle provides the service that
allows remote clients to discover the ABI RBC Server in the
first place. In order to benefit from this service though, the
ABI RBC Server must first register himself to the discovery
bundle.

Table 4.1: ABI RBC Server Dependencies

this project, the documentation of the RBC Protocol ([NB05b]) as well as the RBC API ([NB05c]) have
been put into separate documents rather then fitting all in one.

term project, July 2005

4.2. SYSTEM COMPONENTS OVERVIEW 31

4.2.4 Remote service

We recall that a remote service basically refers to a service that is provided by distributed clients. In contrast
to classical distributed client applications which communicate with the ABI RBC Server (See section: 4.2.3)
we rather refer to clients which add a service in form of a virtual device. Currently we provide one of such.
Namely the PCPresence service (See section: 3.6).

4.2.4.1 Basic functionality

The ABI Remote Service bundle basically implements two functionalities. In one hand it implements a new
separate bus and on the other hand it manually builds the interface in form of a server to ”remote service
implementations”. Because of the fact that remote services could be anything we provide a generic bus
(virtual bus) for such kind of purpose that is adaptive and hence can be easily extended if more concrete
remote service are hooked to the ABI System in the near future.

The concept that has been applied in this virtual bus is basically the same as the one applied in the Falcon
bus. Therefore the terms: PropertyProvider, Properties and abstract bus concept should meanwhile be a
familiar expression and won’t need any further explanation. An exemplification of this concept is depicted
in figure: 4.6.

4.2.4.2 Dependencies

The ABI Remote Service Server bundle momentarily is depending on only two different bundles (See figure:
4.1). The collaborators are quite familiar since it does have similarities to the ABI RBC Server bundle (See
section: 4.2.3).
However it does not depend on the area and neither we need any kind of update message in this context since
we represent a virtual device and no server that must dispatch messages in form of method calls to other
subsystems. Of course we depend on the core bundle since we implement a virtual bus and accompanying
virtual devices as well, but in contrast to ordinary devices we receive corresponding changes across this server
and not from a bundle that replicates a hardware proxy. The second dependency that we can register is the
service that allows remote clients to discover the ABI Remote Service Server in the first place. In order to
benefit from this service though, the ABI Remote Service Server must first register himself to the discovery
bundle.

The applied communication subsystem has been partly adapted from the communication subsystem of the
ABI RBC Server since they are quite related except some few constraints and of course the fact that they
don’t share the same protocol (See section: 4.2.4.3).

4.2.4.3 Remote Service Protocol

The Remote Service Protocol (RSP) defines a small set of messages which are based on the RBC Protocol
([NB05b]). The differences are that it defines a complete different message set to be used.
Any other features and constraints are the same though. For instance the MessageTypes (message, request
and response). So any detailed information about the entire message and its notation should be take from
the RBC Protocol paper ([NB05b]).

In order not to treat this part in a separate paper we holistically define it in here (See appendix: A.1)
since its similitude to the RBC Protocol.

term project, July 2005

CHAPTER 4. ABI SYSTEM ARCHITECTURE 32

Figure 4.6: Remote Service Bundle architecture

4.2.4.4 Notes

Its important to note that the presence service is currently being tested and therefore is still experimental.
However in the upcoming diploma thesis a very important feature that must properly function since we need
a more ”reliable” way of detecting presence according to section: 3.6.

4.2.5 Discovery system

According to figure: 4.2, the Discovery system holds a bundle called ABI Discovery bundle. The intention
of the bundle has already been explained in previous sections and won’t need any further clarifications.
The bundle itself doesn’t have any dependencies since it does not directly consume any services from other
bundles.

term project, July 2005

Chapter 5

RBC Protocol Specification

As mentioned in the previous sections the documentation has been taken out of this document, in order to
enhance its maintainability.
However a brief introduction to the RBC Protocol might be worth to be summarized because it might help
to understand why such a protocol was necessary and in order to see how the messages have been designed.

5.1 General purpose

The purpose of the RBC Protocol is to describe the protocol to be used for exchanging information between
the ABI System (RBC Server Bundle 4.2.3) and custom application programs that need guaranteed reliable
transmission of data in a simple, ascii-based protocol. One major use of this protocol is to enable applications
to retrieve changing device information and on the other hand commands which are executed in the RBC
Server similar to remote procedure calls. Hereby it provides a standard that all ABI client applications need
to adhere when communicating to the ABI System.

5.2 RBC Message Format

Having explained the basic protocol capabilities in a formal we can now define how such a packet (message) is
structured in an informal way. We distinguish between three different type of messages: Request, Response
and Message.
The figure 5.1 illustrates the simply structured message format that need to be adhered by both parties
(Client and Server).

Figure 5.1: The RBC Message Format

All types of message consist of a message name and a message type, zero or more body fields, an empty line
(i.e., a line with nothing preceding the CRLF) indicating the end of the body fields.
In the interest of robustness, servers SHOULD ignore any empty line(s) received where a message type or a

33

CHAPTER 5. RBC PROTOCOL SPECIFICATION 34

message name is expected. In other words, if the server is reading the protocol stream at the beginning of a
message and receives a CRLF first, it should ignore the CRLF.
The CRLF at the end of the last property indicate the end of the message and MUST be adhered.

RBC-message = Request | Response | Message; RBC messages

Formally the message is defined as:

generic-message = messagename CRLF
messagetype CRLF
*(property CRLF)
CRLF

messsagename = OCTETWCR
messagetype = "Request" | "Response" | "Message"

5.3 RBC Messages

RBC messages generally consist of requests from client to server and responses from server to client. Unlike
HTTP ([HTT]) this proRBC Messages a third one called message. Messages of type message can be sent
from either the client or the server. The crucial difference between message to regular request-response
messages is that it’s implying a non-blocking one-way message.

term project, July 2005

5.4. APPLIED EXAMPLE 35

Bundle RBC Message category Description
Common RBC Message Packets Common RBC Messages is a message packet category that

defines special message packets which actually don’t have
anything to do with our context. However they provide
necessary features which are quite valuable for a protocol
to have when dealing with error afflicted messages and such.

RBC Control Message Packets RBC Update Message Packets define all messages which
have an associating context to control messages. Most ap-
plication layer protocols support control packets that pro-
vide necessary information about clients or servers which
i.e. provide remote peer information and such. So does
this one. On one side ensure the compatibility and on the
other to control the connection (establishment and termi-
nation). Other messages are to be included later such as
the entire authentication procedure.

RBC Bus Message Packets RBC Bus Message Packets all messages which have an asso-
ciating context to buses. For instance we provide a message
that requests all available buses within the ABI System
(showbuses message) and hence also provide messages to
connect respectively disconnect a given bus to / from the
ABI System.

RBC Device Message Packets Device Messages Packets define all messages which have an
associating context to devices. All messages defined here
are messages which are initiated by the client as either of
type request-response or message.

RBC Area Message Packets RBC Area Message Packets define all messages which have
an associating context to areas. All messages defined here
are messages which are initiated by the client as either of
type request-response or message.

RBC Update Message Packets RBC Update Message Packets define all messages which
have an associating context to server updates. All messages
defined here are messages which are initiated by the server
and provided with the message type message only!

Table 5.1: RBC Messages

The RBC Protocol defines a set of different message categories, each of which has different responsibili-
ties. These are: More details about each message category should be obtained from the RBC Protocol
documentation (See: [NB05b]).

5.4 Applied example

According to the analysis part (See section: 3.4), every device does have its own set of well-defined proper-
ties. All writable properties are authorized to be set by the client if desired. In order to submit changing
properties such a message or command is necessary. The RBC API ([NB05c]) uses this command when i.e.
changing the lightstatus from ON to OFF or vice-versa.

In order to see how such a message look like in practice we illustrate one of them (See: 5.4).
Referring to the type constraint, this protocol defines 6 data types which can be seen as a small set of IDL.
Again, each type may have associating constraints which will be appended. For more details please consider
the RBC Protocol Specification ([NB05b]).

term project, July 2005

CHAPTER 5. RBC PROTOCOL SPECIFICATION 36

Message-Name: getproperies
Scope: Client → Server
Common Message-Type: REQ → RES
Description: The getproperies command can only be initiated the client. The

command requests all available properties of a device. i.e. A light
can be either switched on or switched off or Blinds can be set into
different positions.

Body parameters:

1. REQ, deviceurl: The unique device identifier i.e.
http://0.0.0.0:65/...

2. RES, deviceurl: The unique device identifier i.e.
http://0.0.0.0:65/...

3. RES1, propertyname: The custom property of a concrete
device. i.e. A falcon device

4. RES1, propertyvalue: The custom property value of a con-
crete device. i.e. A falcon device

5. RES1, readable: Is the property readable?

6. RES1, writeable: Is the property writeable? Which indicates
that it can be set. i.e. A light.

7. RES1, type: The data type of the propertyvalue. depending
on the data type they may be a bunch of constraints asso-
ciated with that property. For instance an integer or a float
provide a {min,max} pair which define a range, etc.

Request-Response example:

1One single device may have several properties to be added

term project, July 2005

Chapter 6

RBC API Specification

As well as the RBC Protocol 5 the RBC API documentation has been taken out of this document, in order
to enhance its maintainability.
This API will play a central role in our upcoming diploma thesis and might address you as well when you
intend to develop any custom application for the ABI System.
However a brief introduction to the RBC API might be worth as well.
More details to the RBC API such as the Analysis, Architecture, Design and Implementation and the RBC
Tutorial should be obtained from the RBC API documentation directly (See: [NB05c]).

6.1 General purpose

The RBC API provides an API Specification that standardize how concrete API implementation need to be
implemented in order to comply to its requirements. Most of the features have already been defined by the
underlying protocol specification called RBC Protocol ([NB05b]).

The purpose of the RBC API is to simplify any future development of custom client applications asso-
ciated with the ABI System in the sense that it provides a compact application layer standard which should
ultimately be implemented by a concrete API that implements the RBC Protocol requirements as it was
prescribed by its specification. This concrete implementation should provide the capability to remotely com-
municate to the ABI System Server in such a way that developers don’t need to put up with the RBC Protocol
anymore. In other words it hides any required background activities such as communicating to the RBC
Server that has been implemented and installed as a separate bundle inside the OSGi Framework([KNO]).

The benefit of such a system is that ABI client applications such as the ABI Admin ([NB05a]) can now
be developed independently without having to deal with the ABI System itself. Thus improving any devel-
opment practices such as complex integration testing, debugging and maintenance remarkably.
Speaking in forecast we want to develop a system that can provide the capability to plug any independent
ABI client that implements different learning methodologies which can be recorded and monitored and is
able to take over the control of the ABI System in a distributed kind of fashion. Thus relocating any building
intelligence to client applications instead of the heavy ABI System, each of which has its own framework
that is logically quite similar to that provided by the ABI System. In contrast to the ABI System though,
the RBC API provides a decent level of abstraction with the result that application programmers don’t even
need to know about the existence of the ABI System in the first place.

Further we introduce two different implementation of the API, briefly skim how they have been imple-
mented and most importantly provide a short tutorial that explains how they are being used in practice.
Finally you will see how easy it is to write your own custom client application that can for instance be a
tool for an administrative purpose such as the ABI Admin ([NB05a]) or for logging environmental data such
as the the simple logging service provided by the tutorial ([NB05c]) or can even provide an entire building

37

CHAPTER 6. RBC API SPECIFICATION 38

intelligence software.

In the future we want to provide and implement a third implementation of the API that is capable of
supporting any client applications to be installed as a separate OSGi bundle as well. In other words, with
the additional implementation of the RBC API specification we allow any client application to be either
turned into a separate bundle or to be executed in a separate runtime environment means to use the remote
RBC API implementation instead.
The advantages of such an approach is to reduce the overhead that a distributed system commonly brings
along. Depending on the client application such a possibility might be useful or even needed. Imagine an
AI application that suddenly stops to control an area upon a network failure. Nevertheless for the majority
the distributed system solution fits perfectly (With the usage of the remote RBC API implementation).

According to figure: 6.1, the architecture is composed into three main parts. Further the bottom is con-
structed out of (two) sub-parts.

Figure 6.1: Architectural overview

term project, July 2005

Part IV

Design and Implementation

39

Chapter 7

Introduction

The architecture part (See part: III) rather provided the high level aspects of the ABI System, whereas
the next implementation and design chapters (chapter: 8-13) are more emphasizing and revealing a more
detailed view of the ABI System.

According to figure: 4.1 the entire ABI System has been constructed out of bundles. Hereby each bun-
dle usually provides a collection of services. A service in turn is preferably an interface.

The next chapters are rather meant to be used as a reference book since they dig in quite deep into each
bundle. In other words: The next chapters are intended for system developers that must keep track of the
system. Each chapter has been dedicated to a separate bundle since some of them are quite big and need to
be explained in how they have been designed and implemented.

Most sections within each chapter provide a mix between descriptive text, UML diagrams and code snip-
pets. We though that it was worth to provide a combination of the three since certain things are in one way
easier coded then described and on the other sometimes easier described or illustrated then provided in code
snippets.

In order to provide an overview of all implemented bundles and their main responsibilities we summarized
all of them (See next section: 7.1).

40

7.1. BUNDLE OVERVIEW 41

7.1 Bundle overview

Bundle name) Description
ABI Core The ABI Core can basically be considered as the heart of the ABI System. It

prescribes and exposes a set of well defined interfaces that mostly correspond
to either the property concept 3.4 or the abstract bus concept 4.2.1. More
details should be taken from chapter: 8.

ABI Falcon According to section: 3.2 a separate bundle must be implemented in order to
embed the wireless devices into the ABI System. Hence this bundle implements
a concrete bus called FalconServiceImpl and its supported falcon devices
called FalconLightServiceImpl and FalconPresenceDaylightServiceImpl.
More details should be taken from chapter: 9.

ABI Area Section: 4.2.2 already explained how the ABI Area has been used in our con-
text. We implemented the ABI Area to keep track of all areas that broadcast
any alterations across the wires provided by the Wireadmin ([OSG]). Addi-
tionally we allow all areas to be stored in a XML file that can later be used to
boot-strapped the entire system with its information in order not to lose any
statical structure information.
More details should be taken from chapter: 10.

ABI RBC Server The fact that we allow the ABI System to be remotely controlled by any distrib-
uted client application we equip the ABI System with a corresponding server
that provides some kind of entrance to the ABI System. The bundle makes
use of a very adaptive generic communication subsystem that implements the
RBC Protocol Specification ([NB05b]) capabilities. In particular it allows any
message to be sent synchronously or asynchronously.
More details should be taken from chapter: 11.

ABI Remote Service When having a glance back to its initiator sections such as section: 3.6 you
might remember that enhanced presence detectors need to be considered in the
ABI System. This bundle realizes this in form of a server that in contrast to
the RBC Server actively polls for its connected PC Clients ([TZ03b]) that in
summary represent a small thin client software piece that can be installed on
each desktop system that facilitates rather more accurate presence information
then the ordinary ones. The reason why the server should poll for its clients
should be taken from the corresponding chapter: 12

ABI Discovery Service When multiple servers are being implemented and invoked in the ABI System
it might be worth of considering to plug a discovery service that ”bundles”
all ABI System capabilities into one single multicast message that publishes
service name, service description, ip-address and the port the server is running
on to any possible client application.
More details should be taken from the corresponding chapter: 13.

Table 7.1: ABI System Bundles

7.2 Notes

All code snippets and UML diagrams provided by the following chapters are usually incomplete and have
been simplified for illustration purposes.
Additionally it should be clear that the provided code snippets are by all means not presented in their full
length. Instead, all UML diagrams as well as the source code snippets are meant to provide additional
information when reading the chapters.

term project, July 2005

Chapter 8

ABI Core Bundle

8.1 Overview

The design of the ABI Core bundle can basically be subdivided into three main parts. The first one is the
general Abstract Bus concept which provides the generic abstract bus interface and the multiplexer that
manages the device objects. The second part rather defines a set of interfaces which prescribe all currently
supported services such as a presence service. The last part actually puts the generic property concept into
practice that has been introduced in the previous chapters and sections.
Next to the three main responsibilities it defines some additional service such as a virtual producer that
can be used as a temporary producer that send data across a temporary created wire. This can be quite
useful for other bundles and services. For instance The ABI RBC Server makes use of this in order to inform
certain device services about a requested status change.

The following class diagrams should depict the collaboration between the services or rather which services
interfaces have been exposed for concrete services to be implement.

Please note that we currently only document the services which were necessary in reference to the Fal-
con devices. The generic design however will perfectly fit for the lon bus as well but since the lon part need
to be incorporated into the generic design and partly rewritten, services such as the blind service must have
been excluded from the current ABI System part. In the diploma thesis we will comply to that though.
Please note that the sensor and actuator service interfaces are historically kept in order not to introduce
something completely new. However it would also make sense to get rude of all interfaces and only make
use of the ABIBaseDevice and the PropertyProvider since design technically this would be advancement.
Nevertheless it might be worth to keep the interfaces for compatibility reasons and most importantly at first
glance it might look weird not being capable of identifying a device by its interface. Therefore we do not
add predefined properties to the ABIBaseDevice but rather leaf the responsibility to each separate device
interface to at least allow some kind of grouping. Hypothetically speaking we may consider of introducing
a concept that should determine what kind of service the entire ABI System provide. This information
can then be queried by any remote client just like a webservice. If we would proceed we would end up by
providing some kind of service description similar to a wsdl file that describes a webservice. The description
should be human readable and should additionally contain information how to make use of the service. With
this concept any service can be implemented totally independent and hence does’t need to bother with any
service identification issues. In summary we just need some kind of a unification that is stable. Currently
we decided to take a middle course in order to be capable of heading in all direction.

42

8.2. SENSOR SERVICES 43

8.2 Sensor services

Figure 8.2 gives an overview of the currently supported sensor interfaces. As you might have noticed, the
interfaces do not illustrate much but some constants. This is because each device service currently only de-
fines and represents a marker interface. Hereby each device service owns a set of properties which basically
allows some kind of grouping among each service. According to the introduction (See: 8.1) we might need
to consider something different. But momentarily we basically have no choice since we need to adapt the lon
bundle in a second part. And since the lon bundle has been implemented using interfaces instead of generic
properties we leave it hereby (currently).

Figure 8.1: Sensor services overview

The DaylightService exposes an interface that each device must implement when owning a service that is
capable of measuring the daylight.

1 public interface DaylightService
2 {
3 // The value itself should preferably be a floating point type.
4 public static final String DAYLIGHT_VALUE_NAME = "daylightvalue";
5 }

The PresenceService exposes an interface that each device must implement when owning a service that is
capable of detecting presence. Please note that this could be a service that goes beyond a common presence
detector. For instance a virtual device might implement some other fancy technique of sensing presence.
Currently two presence services have been implemented with this interface.

• The Falcon presence daylight service (See section: 3.2.2)

• The PC Presence Service that has been realized as a Remote Service (See section: 3.7)

1 public interface PresenceService
2 {
3 // The value itself should preferably be a BooleanType
4 public static final String PRESENT_STATUS_NAME = "presencestatus";
5
6 // The value itself should preferably be a floating point type.
7 public static final String BATTERY_STATUS_NAME = "batterystatus";
8 }

The PresenceDayLightService exposes an interface that each device must implement when owning a ser-
vice that is capable of detecting presence and measuring the daylight.

term project, July 2005

CHAPTER 8. ABI CORE BUNDLE 44

1 public interface PresenceDayLightService extends PresenceService,
2 DaylightService
3 {
4
5 }

8.3 Actuator services

As you can see we currently only support one actuator (See figure 8.2). It has been mentioned that services
such as the blind service will be integrated at a later point of time since its concrete device implementation
is only addressable across a corresponding lon bus implementation.

Figure 8.2: Actuator services overview

The LightService exposes an interface that each device must implement when owning a service that is
capable of switching on and off a light.
The LightService prescribes a property called lightstatus and a corresponding PropertyType to be of type:
EnumyType (See figure: 8.5.1) or consult the RBC Protocol specification ([NB05b]).

1 public interface LightService
2 {
3 // The value itself should preferably be an EnumType
4 public static final String LIGHT_STATUS_NAME = "lightstatus";
5
6 // The property type should therefore preferably be an EnumType
7 public static final EnumType LIGHT_STATUS_ENUMTYPE =
8 new EnumType(new String[]{"ON","OFF"});
9 }

8.4 Abstract Bus Concept

Each service registered as BusCategory (See figure: 8.4) gets automatically collected by the ABI bus mul-
tiplexing driver (See: [BG04a]). This automated attachment works only if the new bus service has set an
appropriate unique name (BusCategory.DEVICE CATEGORY NAME) in its properties. According to the
BusCategory interface each service that has been implemented as a bus should have its own way to connect()
and disconnect() respectively.
Hence each bus that should be integrated by the ABI System needs to implement the BusCategory inter-

face. Concretely speaking the Falcon Bus service and also the ABI Remote Service have implemented the
BusCategory interface since they both represent a bus in their own ways i.e. The Falcon bus uses RS232
and the ABI Remote Service uses Ethernet. More information about the Abstract Bus Concept should be
obtained from our predecessors (See: [BG04a]).

term project, July 2005

8.5. PROPERTY CONCEPT 45

Figure 8.3: Bus service

8.5 Property Concept

8.5.1 Overview

This section provides a rather more tutorial like explanation about how properties are being used and also
have been used in the current ABI System.
This section does not explain the property concept it its detail anymore. So we assume that you are already
familiar with the concept in theory. In order to see how they are applied we will start with an overview that
depicts all classes in order that you know how they collaborate with each other (See figure: 8.5.1).
The theory sections you might want to have a look at in parallel are: 3.4, 4.2.1.1 and 4.2.1.2. You might
also want consider the RBC Protocol Specification since it makes use of the concept in the defined messages
as well ([NB05b]). Currently we support following custom data types (See figure: 8.5.1).

term project, July 2005

CHAPTER 8. ABI CORE BUNDLE 46

Figure 8.4: Property Concept

term project, July 2005

8.5. PROPERTY CONCEPT 47

Figure 8.5: Propertytypes overview

8.5.2 Implementing a new Device

When implementing a new device you need to derive your custom device (here DummyDevice) from the
PropertyProvider and the services you wish to support (Line 1). In this example we obviously implement
a light service. So accordingly we implement the marker interface, LightService also. SomeListener refers
to a fictional listener interface that provides a method called dataReceived(). This method will be called
by the underlying hardware or virtual device upon receiving any data dedicated for this device proxy. Let
us first discuss the constructor (Line 3).
As stated in previous chapter and sections each device needs to define its provided or supported properties.
In this example we only provide one property. Properties are being added upon calling addProperty() (See
below)

/**
* Adds a new device property.
* when initializing any device specific constraints. Preferably in the concrete
* device’s constructors.
*/
public void addProperty(

String _name, // The name of the property
String _value, // The value of the property
PropertyType _type, // The type of the property
boolean _isReadable, // Is this property readable?
boolean _isWriteable); // Is this property writeable?

term project, July 2005

CHAPTER 8. ABI CORE BUNDLE 48

In this example we provide the propertyname LIGHT STATUS NAME and declare the initial propertyvalue
as OFF. The third parameter has been assigned as an EnumType since it provides ”ON” and ”OFF” values.
The last two parameters have been set to true since we can logically switch ON and OFF the lights (Line
9).
Herewith we have defined the device capabilities. So to recall the dataReceived() method from the be-
ginning: Whenever the concrete device has sent any useful and valid data you can set the corresponding
properties accordingly. This is accomplished upon calling the setPropertyValue method. It should be clear
that the defined property status will hereby get changed.
After having set all necessary properties you can submit your changes upon calling updateAllConnectedWires().
As the name implies the method applies the changes through the wires provided by the Wireadmin (See
[OSG]).
Some more implementation details about the PropertyProvider class can be obtained in section 8.5.3.
We are confident that you’ve noticed that a light can be either appear as Consumer or as Producer as well.

1 public class DummyDevice extends PropertyProvider implements LightService,
2 SomeListener
3 {
4 public DummyDevice(BundleContext _bc,....)
5 {
6 this.btxt = _btxt;
7 // And more initializations and registrations...
8
9 // Add custom properties that features our capabilities for this device
10 addProperty(LIGHT_STATUS_NAME, "OFF", LIGHT_STATUS_ENUMTYPE, true, true);
11 }
12
13 //...
14
15 public void propertyChanged(String name, String value, String _trigger)
16 {
17 // Send the commands to the hardware or virtual device
18 // This could be anything. Data over RS232 or Ethernet, etc.
19 }
20
21 // Method provided by SomeListener
22 public void dataReceived(/* some data */)
23 {
24 // Receive the data
25 // Analyse the data
26 // Set the properties
27 setPropertyValue(LIGHT_STATUS_NAME, LIGHT_STATUS_ENUMTYPE
28 .getEnumValues()[1], "YOUR TRIGGER");
29
30 //...
31
32 // Update all wires in the PropertyProvider
33 updateAllConnectedWires();
34 }
35 }

8.5.3 PropertyProvider code inspection

One of the crucial design aspect is the PropertyProvider. Before we dig into some implementation details
we briefly summarize its task again.

term project, July 2005

8.5. PROPERTY CONCEPT 49

The property provider is an abstract class that all devices need to extend when willing to benefit from
the property feature. It stores properties of a device and it is responsible to perform necessary updates on
the wires: i.e. When receiving data from the devices and vise-versa to obtain update request from others(i.e.
Client), provided that the property is writeable. This class then initiates appropriate changes to the physical
and virtual devices or feed the client with new data upon device property changes. i.e. Present sensor goes
from false to true.¡br¿ To change properties to the physical or virtual devices, this class provides an abstract
method called propertyChanged that all devices i.e. FalconLightService need to implement. In the following

Figure 8.6: PropertyProvider

code snippets we want to illustrate how the (The Wireadmin and the common flavour called PropertyList)
have been applied, we also give some insights in how the Wireadmin operations such as the polled() method
has been implemented.

Since a device and hence the PropertyProvider can be Consumer as well as Producer we must comply
both interfaces (Line 2).

1 public abstract class PropertyProvider implements ABIBaseDevice
2 Consumer, Producer
3 {
4 }

Please don’t pay any attention to the ABIBaseDevice since it doesn’t have any influence in our design but
as it has been mentioned in the overview we might find something in common that each device must provide
(such as a set of generic properties).

If a device consumes or is capable of producing data as well can only be determined by the correspond-
ing device properties. Namely if a property is considered readable, the Wireadmin method polled() can
be invoked by the consuming service or each concrete device can manually update the wires by calling
updateAllConnectedWires(). Again, this method is called by each concrete device (provided that they
own readable properties) right after they receive new device information (See section: 8.5.2)

1 public synchronized void updateAllConnectedWires()
2 {
3 // Create the send list
4 PropertyList sendList = new PropertyList();

term project, July 2005

CHAPTER 8. ABI CORE BUNDLE 50

5 Iterator itr = getProperties().iterator();
6 while (itr.hasNext())
7 {
8 Property p = (Property) itr.next();
9 if (p.isReadable())
10 {
11 sendList.add(p);
12 }
13 }
14 // Update the consumerWires
15 for (int i = 0; consumerWires != null && i < consumerWires.length; i++)
16 {
17 try
18 {
19 consumerWires[i].update(sendList);
20 }
21 catch (Throwable t)
22 {
23 t.printStackTrace();
24 }
25 }
26 }

If a property is writeable as well and hence is implying that the device can be set, i.e. a light), the Wireadmin
method update() will be invoked.
Basically we would’t even need to ask if we provide the flavour PropertyList since it can’t be others
then this one (Line 3). However after having received a new PropertyList across the wires (i.e. The RBC
Server might have received a command the issued the request) we can read out the content and call up the
propertyChanged() method for every property stored in the PropertyList (Line 18-23).

1 public void updated(Wire excludeSourceWire, Object in)
2 {
3 if (in instanceof PropertyList)
4 {
5 this.processProperties((PropertyList) in, excludeSourceWire);
6 }
7 else
8 {
9 //...
10 }
11 }
12
13 //...
14 private void processProperties(PropertyList in, Wire excludeSourceWire)
15 {
16 for (Iterator iter = in.iterator(); iter.hasNext();)
17 {
18 DeviceProperty p = (DeviceProperty) iter.next();
19 Property current = (Property) propertyList.get(p.getName());
20 current.setValue(p.getValue());
21
22 // Call the abstract template method of the concrete device
23 propertyChanged(current.getName(), p.getValue(), p.getTrigger());
24 }
25 }

term project, July 2005

8.6. FLAVOURS 51

8.6 Flavours

Before you read this section and its accompanying subsections we recommend to read up on the ABI RBC
Server bundle first in order to understand why they are necessary (See chapter: 11).

8.6.1 ABIBusStatus flavour

Figure 8.7: ABIBusStatus flavour

You should already be familiar why such a flavour is necessary. If not we suggest to read the appropriate
architecture part (See section: 4.2.3.2).

In contrast to all other flavours this flavour does not directly define any constants in itself. This is be-
cause we adapted the previously defined class BusCategory ([BG04a]) which already defined the appropriate
states. More information can also be found in the RBC Protocol specification ([NB05b]).

We commonly send an instance of the ABIBusStatus across the wire as soon as we detect when a new
bus has been either plugged or removed. At the moment only the RBC Server provides a receiver class that
reads out the bus status and broadcasts the the status change to all distributed clients (See section: 11.2).

8.6.2 ABIDeviceStatus flavour

Figure 8.8: ABIDeviceStatus flavour

Similar to the ABIBusStatus flavour (See: 8.6.1) we assume that you are already familiar with this flavour
as well. If not we suggest to read the appropriate architecture part (See section: 4.2.3.2).

This flavour defines only two constants since we only need to distinguish between STATE REGISTERED
and STATE UNREGISTERED. Similar to ABIBusStatus flavour we do this upon device registration
(registerDeviceAsService) or correspondingly when deregistering a device (deregisterDeviceAsService)
(Both methods can be found in the ABIBusServiceImpl class).

Just like the ABIBusStatus flavour only the RBC Server provides a receiver class that reads out the device
status and broadcasts the status change to all distributed clients (See section: 11.2).

term project, July 2005

CHAPTER 8. ABI CORE BUNDLE 52

8.6.3 PropertyList flavour

This PropertyList flavour is represented by the PropertyList class. It implements a special flavour that
has already been discussed in previous sections and even chapters. So we pass on that and skip it since
it doesn’t provide any constants and actually can be seen as a simply LinkedList that has been wrapped
within this class.

term project, July 2005

Chapter 9

ABI Falcon Bundle

9.1 Overview

This section discusses how we realized the controlling part of the wireless devices as well as how we finally
integrated them into the ABI System.
According to the schema that has also been applied in previous projects ([BG04a]), ([TZ03b] and also has
been briefly summarized in section: 8.4) a new concrete bus has been implemented that is capable of com-
municating to the wireless devices. Hence we implemented a specific bus that is responsible for the low
level communication part that happens to be RS232 as indicated in previous sections (See section: 3.2 and
section: 4.2.1). To draw a certain distinction among the different involved parts we can subdivide the ABI
Falcon Bundle in two parts.

The first part is concentrating on the integration of the new concrete bus and its devices (that we call
falcon bus and falcon devices into the ABI System (See section: 9.2) according to the exposed interfaces
provided by the ABI Core (See chapter: 8).

The second part that we will be discussing in section: 9.3 is rather more emphasizing into the concrete
hardware protocol specification (See: [AG05]) realization. Specifically speaking the communication part
over RS232 and the threading and dispatching part.

53

CHAPTER 9. ABI FALCON BUNDLE 54

9.2 Falcon Bus

Figure 9.1: Falcon Bus

Frankly speaking the implementation schema of the bus and the devices have already been defined by the
ABI Core interfaces 9.2 and thus won’t need any further detailed explanation. When having a glance at

term project, July 2005

9.2. FALCON BUS 55

figure 9.2 you will notice a class called FalconServiceImpl. The FalconServiceImpl replicates the hard-
ware that provides the main entry point to communicate to all interconnected devices. Hence you can think
of the FalconServiceImpl class as a virtual proxy that has been implemented as a separate bus. When
taking a close look at this class one will notice the methods connect() and disconnect(). The connect()
method initializes and opens the comm port and prepare the devices to be ready to receive any data. Hereby
we can state the bus as ”CONNECTED” and proceed with any additional commands as you will see later.
Inversely the disconnect() method closes the comm port to the falcon communicator and hereby breaks
up any connections to the devices.
The following code snipped has been taken out of the FalconServiceImpl class:

1 public boolean connect()
2 {
3 //..
4 falconComm = new FalconCommunicator("COM1");
5 try
6 {
7 falconComm.connect();
8 falconDisp = new FalconDataDispatcher();
9 falconComm.addFalconDataListener(falconDisp);
10 }
11 catch (SerialConnectionException e)
12 {
13 //...
14 }
15 //...
16 }

Line 8 instantiates a new FalconDataDispatcher that allows any data to be intercepted upon its availability.
We accomplish this by registering the dispatcher with the FalconCommunicator (Line 9).
Any further detail on the FalconDataDispatcher and the FalconCommunicator will be covered in the next
section (See section: 9.3). Let’s get get back to the concrete bus realization. In figure 9.2 you can depict
that we support two concrete falcon devices. One device that represents a proxy for the light actuator device
(See section: 3.2.3) and an other one that implements a proxy for the battery powered presence daylight
device (See section: 3.2.2).

9.2.1 Falcon Presence Daylight Service

Instead of a detailed description we rather visualize some implementation aspects on how we’ve realized the
FalconDayLightServiceImpl class since the FalconLightServiceImpl class should basically be more
or less match with the example provided in section: 8.5.2.
The following code snipped has been taken out of the FalconPresenceDaylightServiceImpl class:

1 public class FalconPresenceDaylightServiceImpl extends PropertyProvider
2 implements FalconDevice, PresenceDayLightService
3 {
4 public FalconPresenceDaylightServiceImpl(BundleContext _bc,....)
5 {
6 this.btxt = _btxt;
7 // And more initializations and registrations...
8
9 // Add custom properties that features our capabilities for this device
10 FloatType floatTypeDaylight = new FloatType(0, 127);
11 FloatType floatTypeBattery = new FloatType(0.0f, 10.0f);
12

term project, July 2005

CHAPTER 9. ABI FALCON BUNDLE 56

13 addProperty(DAYLIGHT_VALUE_NAME, "0", floatTypeDaylight, true, false);
14 addProperty(PRESENT_STATUS_NAME, "false", new BooleanType(), true, false);
15
16 addProperty(BATTERY_STATUS_NAME, "0.0", floatTypeBattery, true, false);
17 }
18
19 //...
20
21 public void propertyChanged(String name, String value, String _trigger)
22 {
23 // Not necessary since the presence daylight service does not have any
24 // writeable properties.
25 }
26
27 // Method provided by SomeListener Interface
28 public void dataReceived(/* some data */)
29 {
30 // Receive the data
31 // Analyse the data
32 // Set the properties
33 // Presence? Extract Presence Bit
34 if ((_data & 0x80) == 0x80)
35 {
36 // Present true
37 setPropertyValue(PRESENT_STATUS_NAME, "true", "SYSTEM");
38 }
39 else
40 {
41 // Present false
42 setPropertyValue(PRESENT_STATUS_NAME, "false", "SYSTEM");
43 }
44
45 //...
46
47 // Update all wires in the PropertyProvider
48 updateAllConnectedWires();
49 }
50 }

When scanning through the code snippet have a close look to line 13-16 where we set the device capabilities
and also note that we don’t need to implement the propertyChanged() method since we haven’t added any
properties that are writeable. Line 37 and 42 set the presence status property upon having received any
valid presence status data. Of course we also need to look out for the daylight value but for simplification we
skipped irrelevant code snippets. After having read and set the properties we commit the update by calling
updateAllConnectedWires() that you should already be familiar with.
You might wonder how and where to send any data (commands) to the hardware devices. We will cover
this in section: 9.3.1 since in order to be capable of sending any data to the hardware devices we need the
FalconCommunicator class.

9.3 Hardware control

We start this section with UML class diagram that should facilitate any further readings.

The main components in the falcon communication subsystem are:

term project, July 2005

9.3. HARDWARE CONTROL 57

Figure 9.2: Device Communication

term project, July 2005

CHAPTER 9. ABI FALCON BUNDLE 58

• FalconCommunicator (See subsection: 9.3.1)

• FalconDataListener (See subsection: 9.3.2)

• FalconDevice (See subsection: 9.3.3)

• FalconServiceImpl (See subsection: 9.3.4)

• FalconDataDispatcher (See subsection: 9.3.5)

• FalconDataLogger (See subsection: 9.3.6)

9.3.1 FalconCommunicator

The FalconCommunicator class is actually one of the core classes within this subsystem. Its main task is
to implement the low level protocol ([AG05]) that standardize how to communicate to the devices. Because
of the fact that the falcon communicator device provides an RS232 connector we accordingly implement
the SerialPortEventListener to be capable to receive and send any command to respectively from that
device. In order to establish any communication in the first place we need to adjust the comm port settings
with the SerialParameters class to Baudrate: 19200, Databits: 8, Stopbits: 1, Parity : none.
In order to be capable of communicating over RS232 we considered the Java Communications API (See
section: 9.4).

It wouldn’t make sense to provide any code snippets in here since its quite complicated and would con-
sume a bunch of slides just to explain the protocol capabilities and how we realized it. It might just worth
to know that the protocol is very primitive and only supports a small set of features such as:

1. Supports a simple acknowledgment system

2. Repeat flag can be set

3. Fixed data length

4. No sequence numbering!

For more details we refer to the tools (See [FAL]) and the protocol specification ([AG05]).

The problem that one might encounter is that data that are sent over wireless might get lost. In other words:
One can’t really rely on the acknowledge packets since sometimes you can’t distinguish which packets actually
will be acknowledged. The problem we’ve encountered was: How do we distinguish between two messages
that have been sent from the same device? At first glance this actually sounds solvable but picture this
situation (See figure: 9.3.1 and figure: 9.3.1).

term project, July 2005

9.3. HARDWARE CONTROL 59

Figure 9.3: Protocol Issue SSD1

Figure 9.4: Protocol Issue SSD2

Assuming that the presence device reports presence. So we receive a packet and update the state to
the concrete proxy class (in our case called FalconPresenceDaylightService) accordingly. After hav-
ing received the new data we need to acknowledge the reception of the packet back to its source (See
figure: 9.3.1). Unfortunately this might take a while and the presence device is subsequently sending the
same message with the repeat flag on. This makes sense to indicate that we’ve obviously might have
missed the first message that we actually haven’t. Anyway the fact is that we should’t notify the domain
(FalconPresenceDaylightServiceImpl) about this incident anymore.
Sound logic and natural but what about the second case (See figure: 9.3.1)? What when we even miss the
first announced message? We can’t just drop the repeated message because we need to notify the domain
since the first message has been lost. Evidentially nothing is wrong with the second case either.
The question is what if we combine both cases? Can we distinguish which of the two cases might apply?

Hence the issue we found ourselves in was how do we figure out which of the two cases apply when the
second acknowledge message was destined for the first message?
The popper solution to this issue would have been to use an alternating bit protocol ([ALT]) that supports
some sort of sequence numbers in the sense that it provides an alternating bit that can be set. We tried to
circumvent and reduced the mis recognition by measuring the excess time of each repeated packet. If the
excess time reaches a preset value we consider a message as new and fresh and hence let the appropriate
proxy know about it. Luckily this case is quite rare and can practically be considered as unattainable.
Nevertheless it could happen and hence need to be at least identified.

To get back to the statement that has been made in section: 9.2.1. How and where do we send any
data to the hardware devices?

term project, July 2005

CHAPTER 9. ABI FALCON BUNDLE 60

How When having a look at this class you will notice that we provide a method called: sendCmdString()
that initiates a command to the desired device (provided that it can be set (writeable)). The method
signature should clarify how this method should be used.

public void sendCmdString(int _dest, int _cmd, int _data, boolean _ack)

Where Each concrete falcon device proxy (FalconPresenceDaylightServiceImpl and FalconLightServiceImpl)
might make use of this method. The following code snippet taken from the FalconLightServiceImpl
class should prove that:

1 private boolean turnOn()
2 {
3 try
4 {
5 // Send command to the communicators
6 this.falconComm.sendCmdString(id, LIGHT_ON_CMD, true);
7 }
8 catch (SerialConnectionException e)
9 {
10 return false;
11 }
12 return true;
13 }

9.3.2 FalconDataListener

The FalconDataListener interface provides a listener interface that implemented by its collaborators such
as the FalconDataDispatcher (See section: 9.3.5) and the FalconDataLogger (See section: 9.3.6). Both
classes must hence be register to the FalconCommunicator in order to receive any incoming data packets.

9.3.3 FalconDevice

The FalconDevice device has actually been considered to be implemented since we wanted to distinguish
between devices and non-devices (such as a logger). Currently though we only considered devices and
hence only perform delegation rather them concretely implement this interface. This interface has been
implemented by all concrete device proxies such as the FalconPresenceDaylightServiceImpl class and
the FalconLightServiceImpl class since each of them need to be notified about any hardware device
alterations.

9.3.4 FalconServiceImpl

This class has already been documented in section: 9.2 but as completion worth to be mentioned here again.
In summary it implements the concrete falcon bus that abstracts the underlying wireless topology.

9.3.5 FalconDataDispatcher

The FalconDataDispatcher is responsible for the successful message distribution according to its source ad-
dress. According to figure: 9.3 you can depict that the FalconDataDispatcher implements the FalconDataListener
interface and therefore needs to implement the dataReceived() method accordingly.
Furthermore the entire source distribution need to be sent by a separate thread since we can’t afford the
RS232 thread provided by the Java Communications API to process the message in its entirety. So we
perform a thread exchange to gain better performance at the RS232 connector interface. The following code

term project, July 2005

9.4. LIBRARIES 61

snippet illustrate how this is achieved:

1 public void dataReceived(int _from, int _cmd, int _data)
2 {
3 if (this.falconDevArr[_from] != null)
4 {
5 // Create packet
6 Datapacket pack = new Datapacket(_from, _cmd, _data);
7
8 synchronized (queue)
9 {
10 // Enqueue
11 queue.add(pack);
12 queue.notify();
13 }
14 }
15 }
16
17 public void run()
18 {
19 //...
20 while (queue.isEmpty())
21 {
22 try
23 {
24 queue.wait();
25 }
26 catch (InterruptedException e)
27 {
28 //...
29 }
30 }
31 //...
32 packet = (Datapacket) queue.removeFirst();
33
34 this.falconDevArr[packet.getFrom()].dataReceived(packet.getFrom(),
35 packet.getCmd(), packet.getData());
36 //...
37 }

9.3.6 FalconDataLogger

Has been used for testing purpose. One might consider this class when monitoring falcon message packets.

9.4 Libraries

We considered the Java Communications API to communicate to the falcon communicator because it has
been tested and implemented on all major platforms such as Windows, Linux and MacOS and hence sounded
very practical.
According to the Java Communications API provided by Sun Microsystem ([JAVa]) the API contains support
for RS232 serial ports and IEEE 1284 parallel ports. With updated functionality, developers can:

• Enumerate ports available on the system

term project, July 2005

CHAPTER 9. ABI FALCON BUNDLE 62

• Open and claim ownership of ports

• Resolve port ownership contention between multiple applications

• Perform asynchronous and synchronous I/O on ports

• Receive Beans-style events describing communication port state changes

term project, July 2005

Chapter 10

ABI Area Bundle

10.1 Overview

According to the appropriate architecture (See section: 4.2.2) and analysis (See section: 3.8) part the entire
ABI Area bundle was designed to provide two public service interfaces. The AreaServiceManager interface
that is responsible for creating and deleting areas and the AreaService interface that is responsible for
managing an area in all its possible constraint such as adding, removing devices and even changing device
locations.
The following UML diagram should depict the dependencies among the classes that make up the ABI Area
bundle (See figure: 10.1). Two remarks might seem appropriate to fully understand how the ABI Area has
been implemented. The first question that might be of interest is how and when do we save the areas?
As you can depict from the UML diagram (See figure: 10.1) the AreaIO interface provides two methods
called loadArea() and saveArea() which have been implemented by a concrete persistence class called
AreaIOXML. As the name implicate this class loads respectively stores the areas when being invoked. So
when the OSGi Framework initiates the bundles and within the ABI Area bundle it calls up the start()
method that subsequently loads possibly stored areas from the file into the framework. Inversely when the
framework terminates we save the current area context into a XML file. The following code snippets from
the Activator should illustrate that.

Load the XML file upon calling start():

1 // Load stored areas
2 AreaIO io = new AreaIOXML(bc, "testareas.xml");
3 try
4 {
5 io.loadArea();
6 }
7 catch(PersistenceIOException _exception)
8 {
9 // drop usually happens when the file does not exist.
10 }

Save area content to a XML file upon calling stop():

1 // Before we stop we save all areas and its added devices
2 AreaIO io = new AreaIOXML(this.bc, "testareas.xml");
3 io.saveArea();

63

CHAPTER 10. ABI AREA BUNDLE 64

Figure 10.1: ABI Area Overview

term project, July 2005

10.2. AREA UPDATES 65

10.2 Area updates

In this subsection we briefly outline how we notify distributed client applications about a new area creation.
The method createAreaService() (method of class AreaServiceManagerImpl) is commonly executed by
the dedicated message handler called CreateAreaHandler (See chapter: 11). When this method is once
being invoked we can observe following activities.
Code snippets from the AreaServiceManagerImpl class’s createAreaService() method.

1 //...
2 Properties props = new Properties();
3
4 String[] clazzes = { AreaService.class.getName(),
5 Producer.class.getName() };
6
7 // Set producer flavor to AreaStatus
8 props.put(WireConstants.WIREADMIN_PRODUCER_FLAVORS,
9 new Class[] { AreaStatus.class });
10
11 // Create AreaService
12 AreaService area = new AreaServiceImpl(bc, _areaPID,_location);
13
14 // Store PID in properties
15 props.put(org.osgi.framework.Constants.SERVICE_PID, _areaPID);
16
17 // Register AreaService to the framework
18 reg = bc.registerService(clazzes, area, props);
19
20 area.setServiceRegistration(reg);
21
22 areastatus = new AreaStatus();
23 areastatus.setUpdatetype(AreaStatus.AREA_CREATED);
24 areastatus.setAreapid(_areaPID);
25 areastatus.setLocation(_location);
26
27 for (int i = 0; consumerWires != null && i < consumerWires.length; i++)
28 {
29 consumerWires[i].update(areastatus);
30 }
31 //...

Line 2-9 Defines the area as Producer since we need to produce a message with a common flavour called
AreaStatus (See section: 10.3).

Line 12 Instantiate a new area with the provided areapid.

Line 22-25 Creates a new AreaStatus object and sets the type of update accordingly to AREA CREATED
(See section: 10.3)

Line 27-30 Updates the wires of the the AreaServiceManagerImpl. The complement Consumer service
is a class called AreaUpdateDispatchImpl that according to section 4.2.3.2 and section 11.2 must be
located in the RBC Server bundle (See chapter: 11)

10.3 AreaStatus flavour

When having a glance back to figure: 10.1 you might have noticed the class called AreaStatus. You should
know by now what the flavour is for. If not we suggest to read the appropriate architecture part (See section:

term project, July 2005

CHAPTER 10. ABI AREA BUNDLE 66

AreaStatus name) Description
AREA CREATED Needs to be set when a new area has

been created. Value = 0x01
AREA REMVOED Needs to be set when a new area has

been removed. Value = 0x02
DEVICE ADDED Needs to be set when a new device has

been added to an area. Value = 0x03
DEVICE REMOVED Needs to be set when an existing device

has been removed from an area. Value
= 0x04

DEVICE LOCATION CHANGED Needs to be set when the device loca-
tion of an existing area has been al-
tered. Value = 0x05

Table 10.1: AreaStatus flavour

4.2.3.2).
To get a visual what each of the defined constants (name and value) might impact when being set by one
of the ABI Area bundle classes (in example see the code snippet on line 23 in section 10.2) we give a short
explanation about them (See table: 10.1):

10.4 Area XML file

It would’t make sense to dig into the code that loads and stores the areas but to get a hunch on how such a
file look like here a small excerpt of it.

<?xml version="1.0" encoding="UTF-8"?>
<areas>
<area pid="http://55.G.71" location="55.G.71">
<device

deviceurl="http://0.0.0.0:64/falcon.bus-1.0/..." detailedlocation="anywhere"/>
<device

deviceurl="http://0.0.0.0:35/falcon.bus-1.0/..." detailedlocation="window"/>
</area>
<area pid="http://55.G.74" location="55.G.74">
<device

deviceurl="http://0.0.0.0:32/falcon.bus-1.0/..." detailedlocation="window"/>
<device

deviceurl="http://1.1.1.1:4/remote.bus-1.0/..." detailedlocation="laptop"/>
<device

deviceurl="http://0.0.0.0:35/falcon.bus-1.0/..." detailedlocation="window"/>
<device

deviceurl="http://0.0.0.0:65/falcon.bus-1.0/..." detailedlocation="corridor"/>
</area>

</areas>

10.5 Libraries

In order to be capable of parsing a XML file we considered the well known Xerces Parser implementation
provided by Apache ([XER]).
It has been chosen because of it’s superiority over the integrated parser provided by Sun Microsystem. To
quote its capability.

term project, July 2005

10.5. LIBRARIES 67

The Xerces Java Parser 1.4.4 supports the XML 1.0 recommendation and contains advanced parser func-
tionality, such as support for the W3C’s XML Schema recommendation version 1.0, DOM Level 2 version
1.0, and SAX Version 2, in addition to supporting the industry-standard DOM Level 1 and SAX version 1
APIs ([XER]).

term project, July 2005

Chapter 11

ABI RBC Server Bundle

11.1 Overview

The RBC Server bundle is presumably one of the core subsystems in the entire ABI System. The RBC Server
again basically is the main entry point for all distributed client applications in the sense that it provides
a set of public methods that can be remotely executed. Therefore the name of genesis: Remote Building
Control (RBC) Server. In the center it provides a subsystem that is responsible for receiving and sending
messages to respectively from clients. Next to the communication subsystem we subdivided the ABI RBC
Server bundle into two subparts.
One part that implements the piece that receives changing bus, area, device and device property information
that must be broadcasted in form of update messages (as mentioned in section: 4.2.3.2) to other clients.
The other part is responsible for implementing the entire protocol specification in form of a communication
subsystem that provides asynchronous message handlers each of which are responsible for handling a specific
message type and hence does interact with other bundle services in order to comply its dedicated request.
Before digging into the communication subsystem we first outline how the first subpart is composed of.
Since we use wires to interconnect other bundle services rather the using their interfaces directly in order
to achieve low coupling, one of the collaborators that has been used is the the Wireadmin. When having
a glance back to table 4.1 where we’ve outlined the dependencies among the bundles, you will notice that
other bundles basically act as Producer whereas the server represents a consumer. You can observe this
when studying figure: 11.1. Please note this diagram is incomplete and has been simplified since we want
to get to the bottom of how they collaborate rather then all the details.

68

11.1. OVERVIEW 69

Figure 11.1: RBC Server Overview

term project, July 2005

CHAPTER 11. ABI RBC SERVER BUNDLE 70

Service Trackers (ST’s) Description
AreaDeviceServiceSTCustomizer The AreaDeviceServiceSTCustomizer is a ServiceTracker

that tracks devices within an area. For instance: When a
new device has been added to an area

AreaServiceSTCustomizer In contrast to the AreaDeviceServiceSTCustomizer this
ServiceTracker tracks an area itself. For instance: When
a new area has been created or removed.

BusServiceSTCustomizer The BusServiceSTCustomizer is a ServiceTracker for
tracking specific BusMultiplexer activities such as busup-
dates. For instance: A new bus has been plugged or the
state of the bus has been changed through a client.

BusMultiplexerSTCustomizer In contrast to the BusServiceSTCustomizer this
ServiceTracker is responsible for tracking devices.
We recall that the BusMutliplexer is know by the core
only. In practice this means that whenever a new device
has been either added (registered) or removed (deregis-
tered) to/from the ABI System, this ServiceTracker will
be informed.

DeviceSTCustomizer According to figure: 11.1 this ServiceTracker tracks de-
vice property changes.

Table 11.1: Service Trackers

11.2 Service Trackers

According to figure: 11.1 you can depict that various focal points have emerged into some kind of schema
called ServiceTracker that is supported by the OSGi Framework ([OSG]). According to the OSGi Speci-
fication a ServiceTracker can be used to track other services of their existence or non-existence.
Hence this is exactly what we’ve needed in our context since we use such a ServiceTracker for instance
to get notified about any device adds or removes. Concretely speaking this means when a device has been
added to the ABI System we pull a wire to it and inversely we delete a wire to a recently removed device.
Of course we need to cover up more cases then just adding and removing devices. Table: 11.1 itemizes each
of the implemented trackers and describe what they track and what they do.

In order to see how this schema works in practice we illustrate some code snippets of the DeviceSTCustomizer.

Each ServiceTracker such as the DeviceSTCustomizer have set of methods (See figure: 11.2).

Figure 11.2: DeviceSTCustomizer

One of them is the addingService() method that in our usage creates a new wire as soon as we detect a
new PropertyProvider and hence a new device (Line 13).

1 public Object addingService(ServiceReference reference)
2 {
3 PropertyProvider service = (PropertyProvider) bc.getService(reference);

term project, July 2005

11.2. SERVICE TRACKERS 71

4
5 ServiceReference[] sr = null;
6 sr = null;
7
8 // Get producerId from the wireadmin
9 String producerId = (String) reference
10 .getProperty(org.osgi.framework.Constants.SERVICE_PID);
11
12 // Create wire to device
13 createWire(producerId, propertylistdispserv.getConsumerId());
14 return service;
15 }

However a ServiceTracker is useless when not being connected with an associated class that acts as a
Consumer since a wire must ordinarily be created between a Consumer and a Producer. In this context
we use a Consumer given by the reference called propertylistdispserv (See line 13 above). In order to
make this possible we must first also associate the concrete ServiceTracker (in the code snippet above:
DeviceSTCustomizer) with the Consumer instance. This is done with the following code lines.

1 // Register propertyupdate message dispatch service for clients
2 this.propertylistdispserv = new PropertiesUpdateDispatchImpl(bc,
3 dispatcher, "property.dispatch.service");
4
5 //...
6
7 // Initialize the tracker for the devices
8 if (customizerPropertyProvider == null)
9 this.customizerPropertyProvider = new DeviceSTCustomizer(bc,
10 propertylistdispserv);

Additionally we need the dispatcher (Line 3 above) that is as we will see later (See section: 11.3.5) one of
the core classes in the communication subsystem that provides a broadcast mechanism which is used by the
concrete PropertiesUpdateDispatchImpl class.

In this case the PropertiesUpdateDispatchImpl class provides an update() method (since it imple-
ments the Consumer interface) that is ready to receive new data across the wire as soon as the wire has been
created by the dedicated ServiceTracker.
The code snippets taken from the PropertiesUpdateDispatchImpl class illustrate the update() method
(Line 1) that invokes the processProperties() method (Line 7) that wraps the content of the wire object
(PropertyList) in a new message provided by the communication subsystem. As soon as the message has
been constructed with the appropriate message fields it will be broadcasted to all connected clients (Line 23).

1 public void updated(Wire excludeSourceWire, Object in)
2 {
3 try
4 {
5 if (in instanceof PropertyList)
6 {
7 this.processProperties((PropertyList) in, excludeSourceWire);
8 }
9
9 //...
10 }
11
12 //...
13

term project, July 2005

CHAPTER 11. ABI RBC SERVER BUNDLE 72

14 private void processProperties(PropertyList in, Wire excludeSourceWire)
15 {
16 // Create Return Message
17 // -1 therefore since we go straight down to the connection
18 Message msg = new SendMessage(-1, RBCConstants.MSG_PROPERTIESUPDATE);
19
20
21 // Add necessary fields to the message
22 //...
23 this.dispatcher.broadcastToClients(msg);
24 }

We complete this section with a sketch (See figure: 11.2) that illustrates each of the involved component
and how they exchange information across the wires. Of course its kept very fundamental since we rather
want to emphasize how the bundles and their services communicate to the server and vise versa. As one can
depict the core exchanges a set of flavours (PropertyList, ABIBusStatus, ABIDeviceStatus and AreaStatus)
(See section: 4.2.3.2)) which are intercepted by the server bundle that provides dedicated dispatch services
each of which act as Consumer (such as the PropertiesUpdateDispatchImpl class mentioned above).

The virtual Producer will be explained after the communication subsystem since it’s actually used by the
handlers (See section: 11.3).

Figure 11.3: Wires to/from the RBC Server

term project, July 2005

11.3. COMMUNICATION SUBSYSTEM 73

11.3 Communication Subsystem

We recap that the communication subsystem is written to be reusable. In order to improve the re-usability,
it has been split into multiple components that can be exchanged, if needed. The communication subsystem
basically does all the low level part such as synchronous and asynchronous message calls and moreover it
implements most of the features provided by the RBC Protocol Specification ([NB05b]).

The main components in the communication subsystem are:

• Connection Listener (See subsection: 11.3.1)

• Connection (See subsection: 11.3.2)

• Message (See subsection: 11.3.4)

• SendMessage (See subsection: 11.3.4)

• ReceiveMessage (See subsection: 11.3.4)

• Message Dispatcher (See subsection: 11.3.5)

• Message Handler (See subsection: 11.3.3)

For detailed information about the classes and their methods, see the source code snippets (below), the
source code documentation ([JAVb]) and the UML class diagram (See figure: 11.3).

11.3.1 Connection Listener

The connection listener (Class name ConnectionListener) continuously listens on a specified TCP port for
new connections. For each accepted connection, it creates a connection object that deals with the connection.
It also has the ability to close all previously accepted connections on demand.

11.3.2 Connection

The connection class (Class name Connection) handles established connections. Each connection is repre-
sented by a Connection object. It continuously reads data from the remote peer and sends messages that
were enqueued for sending. In order to provide a smooth program execution, each connection owns two
worker threads (Reader and Writer).

The reader thread (Class name ReaderThread) is responsible for receiving messages that were sent by
the remote peer. Whenever it has received a complete message, it forwards it to a message dispatcher (See
figure: 11.3) that enqueues the message it its own receive queue (See section: 11.3.5).

The writer thread (Class name WriterThread) is responsible for sending messages to the remote peer.
It reads messages that were previously enqueued in a send queue and sends them to the remote peer.

11.3.3 MessageHandler

The message handler (Interface name IMessageHandler) is only an interface that defines what methods a
message handler must provide. The concrete message handler class is implemented outside the communi-
cation subsystem. Whenever a message arrives, the dispatcher forwards the message to the appropriate
handler which does the real processing work. Additionally the dispatcher is also responsible for verifying
the message.

term project, July 2005

CHAPTER 11. ABI RBC SERVER BUNDLE 74

Figure 11.4: Communication Subsystem

term project, July 2005

11.3. COMMUNICATION SUBSYSTEM 75

11.3.4 Message

The message (Abstract Class name Message) represents a single message that can be sent to or received
from a remote peer. It does all the required data encoding (if any) and provides methods for data access.
Because we need to distinguish between incoming and outgoing messages this class provides two subclasses
called SendMessage and ReceiveMessage which basically differ from each other only by its coding method.
Therefore the Message class provides a template method called:

abstract protected StringBuffer coding(StringBuffer _data);

This method should be implemented by each of the two subclasses that provide a corresponding encoding
and decoding schema.

11.3.5 IMessage Dispatcher and Message Dispatcher

Generally we can describe the concrete dispatcher or its interface with following words:
The message dispatcher (Class name MessageDispatcher) is responsible to distribute received messages to
an appropriate message handler. It is also responsible for sending outgoing messages over the connection
they were received on. A message handler must be registered with the message dispatcher before it can
receive any message in the first place. Messages for which no handler has been registered are considered to
be unknown and are required to be rejected according to the RBC Protocol Specification ([NB05b]).

The latter description was rather more abstract and hence need to be elaborated a bit because it does
quite more then just that. According to the RBC Protocol Specification (See: [NB05b]) we must be capable
of supporting synchronous and asynchronous message calls. Concretely speaking this means: With a block-
ing call any client will hang till the operation completes. In other words once invoked, the client will keep
blocking till it gets the response (if any) from the server. This is a very useful technique when invoking ABI
services (RSI’s) that do not take long time to complete and the hanging in the client side is negligible. This
will be a huge drawback in the client side performance, if the operation takes considerable amount of time.
In contrast a non blocking call will provide the client to use a callback or polling mechanism to get the
responses (if any) for a service invocation. Clients usually get this response it two ways. A good way, which
has also been applied in the reference implementation of the RBC API ([NB05c]) is some sort of callback.
Broadly speaking this means that almost each message type that a client or the server is interested in has a
corresponding message handler that has been registered to a dedicated dispatcher. Herewith each message
is processed by the competent handler upon dispatching.

How do we accomplish synchronous message calls? Truly speaking the server barely makes use of syn-
chronous messages calls since it usually does not invoke services but rather respond to services. Nevertheless
its crucial to be capable of supporting this feature as well.
The next following subsections actually would be more suitable to describe for the client API (RBCAPI)
but since quite some code has been adapted from the server we rather prefer to describe it in here.

11.3.6 Message types

We recall that the RBC Protocol Specification ([NB05b]) distinguishes between three different type of mes-
sages: Request, Response and Message.
When performing blocking calls the clients creates a Request packet with an accompanying message-type.
The Server will dispatch the message to the appropriate message handler that processes the message. When
the server has completed all necessary tasks the server will send the appropriate Response message back to
the client. Hereby the server alters the message with the message-type response. According to this schema
we can fulfill the synchronous message calls in the client side.

When performing non-blocking calls the client simply needs to structure a message of type message. The
server will then process the message by the corresponding callback handler that does the dedicated work

term project, July 2005

CHAPTER 11. ABI RBC SERVER BUNDLE 76

and will quite often provide a default common success response message (See: [NB05b]).

11.3.7 Synchronous messages calls

Well how do we accomplish synchronous message calls? The following code snippets should approximately
demonstrated how this is accomplished.
Basically every time when sending a message one must define whether the message is required to be sent
asynchronously or synchronously. Assuming that a message is requested to be sent synchronously (provided
that the message type has previously been set to type request). Eventually the dispatch thread 1 will call
up the dispatchOut() method (Line 1) when this new message is about to be sent (See section: 11.3.8).

The method therefore provides a way to block the current thread when sending a message synchronously.
This of course is accomplished with a condition variable (Line 22-35) that simply blocks a specified amount
of time until it will be released by the wait pool again (has either been released by the complementary
dispatchIn() method or when the timeout has been reached). Please note that asynchronous messages
don’t need to provided this feature since they don’t require to be blocked.

1 public synchronized Message dispatchOut(Message _msg, int _timeout)
2 {
3 Connection connection = null;
4
5 /**
6 * SYNCHRONOUS METHOD CALL typ:(Request-Response)
7 */
8 // Treat disconnect as a regular message if one inadvertently had
9 // set Message type request
10 if (_msg.getType().equals(Message.TYPE_REQUEST)
11 && _msg.getName().equals(RBCConstants.MSG_DISCONNECTCLIENT) == false)
12 {
13 connection = (Connection) this.connections.get(new Integer(_msg
14 .getID()));
15
16 if (connection != null)
17 {
18 connection.sendMessage(_msg);
19 lastRequestMessageSent = _msg;
20 }
21 hasArrived = false;
22 // Block Thread until response
23 while (!hasArrived)
24 {
25 try
26 {
27 if (timedwait(_timeout)==false)
28 {
29 return null;
30 }
31 }
32 catch (InterruptedException e)
33 {
34 return null;
35 }
36 }

1For the simplification we assume that the dispatch thread calls up the dispatchOut() method directly although this isn’t
true (See section: 11.3.8 where we use a ThreadPool instead)

term project, July 2005

11.3. COMMUNICATION SUBSYSTEM 77

37 return lastResponseMessageReceived;
38 }
39 /**
40 * ASYNCHRONOUS METHOD CALL (type: Message)
41 */
42 else
43 {
44 connection = (Connection) this.connections.get(new Integer(_msg
45 .getID()));
46
47 if (connection != null)
48 {
49 connection.sendMessage(_msg);
50 }
51 }
52 return null;
53 }

The method dispatchIn() is called by the ReaderThread when a new message is considered as completed.
Hence we need to define whether messages have been sent asynchronously or synchronously. Line 6-9 ac-
cordingly check if we’ve received our corresponding return message. Assuming that we’ve been waiting on
a response message (synchronous call) that ultimately has been received by the reader thread that will ac-
cordingly notify the dispatch thread about the reception. The dispatch thread can then wakeup and proceed
and finally return the message.

1 public synchronized void dispatchIn(Message _msg)
2 {
3 try
4 {
5 // Waiting request to satisfy?
6 if (_msg.getType().equals(Message.TYPE_RESPONSE)
7 && _msg.getName().equals(RBCConstants.MSG_REJECT)
8 || _msg.getType().equals(Message.TYPE_RESPONSE)
9 && _msg.getName().equals(lastRequestMessageSent.getName()))
10 {
11 /**
12 * SYNCHRONOUS METHOD CALL completed typ:(Response)
13 */
14 hasArrived = true;
15 lastResponseMessageReceived = _msg;
16 notifyAll();
17 }
18 else
19 {
20 receiveQueue.enqueue(_msg);
21 }
22 }
23 catch (QueueFullException e)
24 {
25 e.printStackTrace();
26 }
27 }

Please note that the RBC Server usually does not use synchronous method calls since they are usually not
order of the day but rather need to support a set of asynchronous message handlers that process the message
and frankly speaking would actually only require to distinguish whether each received message is of type

term project, July 2005

CHAPTER 11. ABI RBC SERVER BUNDLE 78

message or request. However since we want to provide an entire subsystem that can easily be plugged and
extended the servers (RBC Server, Remote Service Server) as well as the client (RBC API [NB05c]) basically
provide more or less the same subsystem.

11.3.8 Dataflow summary

When the connection listener registers (See section: 11.3.1) an incoming connection, it creates a new con-
nection object that handles the connection from this point. The new connection object gets the message
dispatcher (See section: 11.3.5) assigned to it by the connection listener. Hereby the message dispatcher
keeps a list of all active connections which allows a simple termination of all connections.

Messages that need to be sent are passed to the message dispatcher which checks whether the message
needs to be sent synchronously or asynchronously. Asynchronous message are enqueued in a send queue and
later dequeued by the corresponding writer thread of the connection that sends the messages to the remote
peer. One further note is that messages are sent in the same order as they were enqueued.

Prior to receiving messages, message handlers must be registered with the message dispatcher. Each handler
can register one or more messages it wishes to process. The reader thread of a connection object continuously
reads messages from the input stream. As soon as a complete message is received, it forwards the message
to the message dispatcher (associated with the connection) by calling dispatchIn(). The message is hereby
enqueued in a receive queue provided by the message dispatcher.
Correspondingly the entire dispatcher provides its own thread that processes the messages but similar it
does not execute any handlers within its context since we don’t want to block the dispatch thread from
dispatching new enqueued messages either. So we considered a ThreadPool which does that kind of work.

In particular the dispatch thread continuously dequeues (Line 7) from the receive queue, roughly process
the message header and will then excavate any handler tasks to a separate thread in a ThreadPool, in order
to shorten the processing time needed by each handler. Thus assisting the dispatch thread in the form that
the dispatch thread can return to the BlockingQueue, dequeue() method quite faster and hereby enhance
the speed of dispatching work drastically. One of the competing threads in the ThreadPool can then process
the incoming message by its correpondig handler (Line 19).
This was necessary since the two thread exchanges can really boost performance. The following code snip-
pets illustrates that.

1 public void run()
2 {
3 while (isRunning && Thread.interrupted() == false)
4 {
5 //...
6
7 msg = (Message) this.receiveQueue.dequeue();
8
9 //...
10
11 // Get corresponding message handler from hash-map
12 handler = (IMessageHandler) handlers.get(msg.getName());
13
14 //...
15
16 // Dispatch to corresponding handle for processing...
17 // Might return a new Message (Response) depending on
18 // the message type
19 threadpool.runTask(new HandlerThread(handler, msg));
20 }
21 }

term project, July 2005

11.3. COMMUNICATION SUBSYSTEM 79

11.3.9 Extendability

In the beginning of this section we quoted that the subsystem is easily expendable. Assume that you want
to add some more functionality to your ABI System. Some functionality that that has not been provided
by the ABI System yet. According to our subsystem you need to do three things.

1. The first one is rather more a formal thing but all other developers will appreciate it if you comply to
this rule: Please keep track of all defined messages in the RBC Protocol ([NB05b]) We assume that you
want to add some functionality to the ABI System. Moreover you might have already done that but
you want to make it accessible for distributed client applications. First read up on the RBC Protocol
Specification ([NB05b]) define and add your custom message to the protocol and document it. Please
do never delete any fields of existing messages! But rather use the fields deprecated instead!
Then add your definition of the message to the file called RBCConstants.java also. Herewith you have
defined a new message and can proceed to the handler implementation.

2. As indicated in point one you will then have to implement you own message handler that should
process your message. An example of such a hander is given below. Note that you might want to
inherited from the AbstractHandler (Line 1) as well since you might don’t want to implement other
methods which would be necessary when implementing to the interface IMessageHandler directly (See
JavaDoc: [JAVb]).

1 public class DummyHandler extends AbstractHandler
2 {
3 public Message handle(IMessageDispatcher _dispatcher, Message _msg)
4 {
5 LinkedList list = null;
6 MsgField msgField = null;
7
8 // Read message content
9 list = _msg.getFields();
10
11 while (list.isEmpty() == false)
12 {
13 try
14 {
15 msgField = (MsgField) list.removeFirst();
16 System.out.println("Handler: " + msgField.getFieldName()
17 + ":" + msgField.getFieldData());
18 }
19 catch (NumberFormatException e)
20 {
21 e.printStackTrace();
22 }
23 }
24 return null;
25 }
26 }

3. After having finished the hander code you need to register your handler to the MessageDispatcher (See
section: 11.3.5) by invoking the registerHandler() method (Line 11). In the RBC Server bundle
this is achieved in the Activator class.

1 private void startListen() throws IOException
2 {
3 //...

term project, July 2005

CHAPTER 11. ABI RBC SERVER BUNDLE 80

4
5 /**
6 * Register supported handlers...
7 * More specific information about each message-type or handlers
8 * can be obtained from: the Handlers, RBCConstants
9 */
10
11 this.dispatcher.registerHandler(RBCConstants.YOURMESSAGENAME,
12 new YOURMESSAGEHANDLER(dispatcher));
13
14 //...
15
16 /**
17 * Set the server into listening-Mode
18 */
19 listener = new ConnectionListener(1234, dispatcher);
20 listener.start();
21 }

This is it! You can check on it by using telnet and typing your message format in it.

11.4 Virtual producer

We might have used the term Virtual producer quite some time but we haven’t really discussed him yet.
Truly speaking the Virtual producer is actually a feature provided by the ABI Core and is not part of
the RBC Server. However we think that it is more suitable to discuss him now the in the core since the
server is momentarily the only component that actually makes use of the Virtual producer. The Virtual
producer basically creates a temporary wire that is created upon calling the send method. A virtual pro-
ducer is necessary since quite often no long lasting wires are required. i.e. When switching off the lights.
But according to the the wireadmin concept we span a wire just to deliver the message. As soon as we
completed the delivery we kill the wire right away though.
Don’t get confused about this concept since it has nothing to do what we’ve discussed in section 11.2. Section
11.2 covered the wires that are required when the server is acting as Consumer since it must receive and
broadcast for instance changing properties to distributed clients. The question is though how about the
opposite? How can we deliver messages from the server to the devices? To tell the truth we only use the
Virtual producer in the SetPropertiesHandler class. Since we work with properties and properties are
provided by the PropertyProvider that implements the Consumer as well as the Producer interface we use
the Wireadmin to deliver the message instead of using interfaces directly (See second code snippet).

Areas in contrast do not implement a Consumer interface and hence are not capable of receiving message
the opposite way through wires. This makes sense since we don’t require any properties in there. So in this
case we consult the interfaces instead (See first code snippet)

With interfaces: (Code snippets from the CreateAreaHandler class)

1 String filter = "(objectclass=" + AreaServiceManager.class.getName() + ")";
2
3 ServiceReference references[] = null;
4 try
5 {
6 references = bc.getServiceReferences(null, filter);
7 }
8 catch (InvalidSyntaxException e)
9 {

term project, July 2005

11.4. VIRTUAL PRODUCER 81

10 e.printStackTrace();
11 }
12 // Retrieve the AreaServiceManager object
13 this.areaServiceManager = (AreaServiceManager) bc
14 .getService(references[0]);
15
16 //...
17 if (this.areaServiceManager.createAreaService(areapid, location))
18 {
19 //...
20 }
21 //...

Using a Virtual producer: (An excerpt from the SetPropertiesHandler class)

1 // Set the properties
2 Properties props = new Properties();
3 props.put(org.osgi.framework.Constants.SERVICE_PID,
4 VirtualProducer.NAME);
5
6 // Define the flavours
7 props.put(WireConstants.WIREADMIN_PRODUCER_FLAVORS,
8 new Class[] { PropertyList.class });
9
10 String[] deviceClazzes = { Producer.class.getName(),
11 VirtualProducer.class.getName() };
12
13 // Create the Virtual Producer
14 VirtualProducer vpservice = new VirtualProducer(bc, _deviceurl);
15
16 reg = bc.registerService(deviceClazzes, vpservice, props);
17 vpservice.setServiceRegistration(reg);
18
19 // Send list using the Virtual Producer
20 vpservice.send(_propertylist);
21 // deregister virtual command device
22 vpservice.deregisterDevice();

term project, July 2005

Chapter 12

ABI Remote Service Bundle

According to the ”notes” that has been provided in section: 4.2.4.4 we keep this chapter as low as possible
since it’s still being tested and elaborated.

12.1 Overview

Anyway since the design won’t change we can illustrate it in figure: 12.1

The two core classes in this subsystem are evidentially the RemoteBusServiceImpl and the
RemotePresenceServiceImpl classes. Because of the fact that any device whether or not it provides a vir-
tual one, requires a new concrete bus implementation to be programmed, we need to preserve this concept
in order to be compatible with the ABI core (See chapter: 8). Hereby the RemoteBusServiceImpl class
takes over leadership by providing its own server that actively polls the presence status on each PC Presence
Device (Personal Computer). This has been done because we need a way to figure out if a PC Presence
Device has been either terminated (means the a user PC has been shut down) or the PC Presence Device
has suddenly become unreachable. Hence by letting the server poll for each client we can simply initiate
a synchronous procedure call by sending the message: getpresence (See appendix: A.1.3.2) that retrieves
whether each client (user) is present or not.

Naturally we must be capable of identifying each PC Presence Device upon a new connection establish-
ment. Concretely speaking this means that every PC Presence Device must have an unique id. Thus we
need a way to find out whether the user has already been assigned an unique id or not. To solve this issue
we distinguished following two cases:

1. The PC Presence Device doesn’t posses an unique id and is therefore also unknown to the Remote
Server and initiates a regular synchronous connect message (See appendix: A.1.3.1).
The server will then try to register the PC Presence Device as a new virtual device and provide an
appropriate return message with the newly generated unique id enclosed.
The client will then need store the received id for any possible re-identification purposes.

2. The PC Presence Device already owns an unique id and hence initiates a connect message but this
time with the stored id enclosed. Herewith the server is capable of recognizing and verifying the PC
Presence Device’s re-existence. Equally to the latter case we subsequently create a new virtual device
with the help of the provided id and of course acknowledge it back to the remote client in form of a
return message.

82

12.1. OVERVIEW 83

Figure 12.1: Virtual Bus

term project, July 2005

CHAPTER 12. ABI REMOTE SERVICE BUNDLE 84

12.2 Further notes

Communication Subsystem: The communication subsystem has been more or less adapted from the
RBC Server. So for more information please consider other sections within the chapter: 11 for this
instead.

remotePresenceServiceImpl: We skip any further explanation about this class since we assume that you
should have seen how this works by now. So for more information about how to use properties or how
to implement a new device consider following sections: 8.5.2, 9.2.1. You might also want to have a
look at the appropriate JavaDoc section: [JAVb] or even the source directly.

term project, July 2005

Chapter 13

ABI Discovery Service Bundle

This chapter has just been added since it has been implemented within a separate bundle. But isn’t actually
worth to be discussed at all because its kept very fundamental. In short we present the simple UML diagram
(See figure: 13.1).

85

CHAPTER 13. ABI DISCOVERY SERVICE BUNDLE 86

Figure 13.1: Discovery Server Bundle

Basically this bundle is intended to provide a discovery service that can be used by bundles which provide a
dedicated server that might benefit from this service in form that they can assign a personal ServiceTracker
(See [OSG]) which can track down the the availability of the discovery bundle.
Basically they would need to check whether this bundles is up and running or not. When the discovery
bundle has been plugged into ABI System they might consider of using it by simply invoking the method
called: addService() where they can make their service public.

Herewith we support any client whether it’s a distributed client application or even a remote service ap-
plication such as the PC Presence Service by providing one global multicast address and group. Thus no
client does really need to know about any service provided by the ABI System directly. A further benefit
is that we can provide low coupling in the sense that one could change all server ports to any port they
require to run completely independent of any client application. Furthermore we don’t need to put up with
dynamically changed ip addresses anymore (DHCP) which frankly speaking does happen if it has not been
statically assigned before.

term project, July 2005

87

In order to receive any multicast message you need to listen on port 6000 and join the appropriate multicast
group with the following address: 225.4.5.6.

The message you will be receiving has been defined in the appropriate appendix section: A.2.

term project, July 2005

Part V

Appendix, Glossary and Bibliography

88

Appendix A

Appendix

A.1 Remote Service Protocol

A.1.1 Introduction

The Remote Service Protocol (RSP) is an application layer protocol for distributed, collaborative, hyperme-
dia information systems. The format of RSP describes a generic, stateless, protocol which can be used for
many tasks beyond its use. Its basically an extenuated version of the RBC Protocol [NB05b]. So in order
to acquire more information please consult this documentation.

The purpose of the RSP Protocol is to standardize the communication between the ABI Remote Service
Server and remote services (See section: 4.2.4).

A.1.2 Defined messages

All fields which are currently specified by this protocol are now given regardless of their message type
(request, response or message) .
Further please note that we don’t cover any message which has already been defined by the RBC Protocol
[NB05b]. So for such messages please consult the RBC Protocol specification.

messagename = reject (RBC Protocol)
| peer-id (RBC Protocol)
| disconnectclient (RBC Protocol)
| connectpresence
| getpresence
| setpresence

89

APPENDIX A. APPENDIX 90

A.1.3 Remote Presence Service Message Packets

A.1.3.1 connectpresence message

Message-Name: connectpresence
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The connectpresence command connects a virtual presence device to the remote

server
Body parameters:

1. REQ1, deviceurl: The unique device identifier i.e. http://1.1.1.1:2/...

2. RES, deviceurl: The unique device identifier i.e. http://1.1.1.1:2/...

Message example:

1This parameter is optional and used for identification purposes

term project, July 2005

A.1. REMOTE SERVICE PROTOCOL 91

A.1.3.2 getpresence message

Message-Name: getpresence
Scope: Server → Client
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: This command returns either true or false (according to the presencestatus of

the called client)
Body parameters:

1. REQ, {empty body}

2. RES, deviceurl: The unique device identifier i.e. http://1.1.1.1:2/...

3. RES, value: {true, false}

Message example:

A.1.3.3 setpresence message

Message-Name: connectpresence
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The setpresence command notifies the server about a new presencestatus

change
Body parameters:

1. deviceurl: The unique device identifier i.e. http://1.1.1.1:2/...

2. value: {true, false}

Message example:

term project, July 2005

APPENDIX A. APPENDIX 92

A.2 Discovery Service Protocol

The discovery message has been defined as follows:

Message-Name: multicastmessage
Scope: ABI Discovery Bundle → Remote Service Device(Client)
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The multicastmessage frequently broadcasts ABI System information such as

available servers, etc.
Body parameters:

1. servicename: The name of the service. i.e. RemoteServer

2. servicedescription: A detailed description of the server

3. ipaddress: The ip address of the server

4. port: The port of the server. i.e. 1234

Message example:

term project, July 2005

Appendix B

Glossary

Abbreviation Explanation / Comment
ABI Adaptive Building Intelligence
ABI System The ABI System implemented using an OSGi Framework
AI Artificial intelligence
Apache Axis Apache Axis is an implementation of the SOAP
API Application Programming Interface
Bundles Java JAR archive
DAI Distributed Artificial Intelligence
DHCP Dynamic Host Configuration Protocol
DSP Discovery Service Protocol
ETH Swiss Federal Institute of Technology
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
IEEE 1284 IEEE 1284 is a standard that defines bi-directional parallel communications

between computers and other devices. It is most frequently used for connecting
computers to printers but it has also been used to connect storage devices, for
file transfer and remote access between computers, and to communicate with
modems ([WIK]).

INI Institute of Neuroinformatics
JAR Java Archive
LNS Lon Network Server
LonWorks Field bus network protocol / standard
OSGi Open Service Gateway initiative
RBC Remote Building Control (Protocol)
RBC Server The Server Bundle of the ABI System
RBC API The protocol abstraction layer API that implements the RBC Protocol
REQ Refers to a message request
RES Refers to a message response
RFC Request for Comments
RMI Remote Method Invocation (Java Technology)
RSI Remote Service Invocation
RSP Remote Service Protocol
RS232 RS-232 (sometimes also referred to as EIA RS-232C) is a standard for serial

binary data

93

APPENDIX B. GLOSSARY 94

Abbreviation Explanation / Comment
Service Interface exported by the service provider bundle
SOAP Simple Object Access Protocol (W3C)
UML Unified Modeling Language
UNIZH University of Zurich, Switzerland
XERCES Advanced XML Parser with many supported features

term project, July 2005

Bibliography

[AG05] Feller AG. Falcon device protocol. Technical report, Feller AG, 2005. 4 Frames Ae2.xls.

[ALT] Alternating bit protocol. http://en.wikipedia.org/wiki/Alternating Bit Protocol.

[Apa] Web services - axis. http://ws.apache.org/axis.

[BG04a] Patrick Brunner and Simon Gassmann. Adaptive building intelligence based on the open services
gateway initiative, diploma thesis. Technical report, University of Applied Sciences Rapperswil,
Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology, Zurich,
Switzerland, 2004.

[BG04b] Patrick Brunner and Simon Gassmann. Adaptive building intelligence based on the open ser-
vices gateway initiative, term work. Technical report, University of Applied Sciences Rapperswil,
Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology, Zurich,
Switzerland, 2004.

[EAS04a] Lprs data sheet – easy-radio er900ts transmitter, er900rs receiver & er900trs transceiver, 2004.
1 EasyRadio900RTx.pdf.

[EAS04b] Lprs data sheet – easy-radio demonstration kit & programming software, 2004.
3 EasyRadiokit.pdf.

[EAS04c] Lprs data sheet – easy-radio guide, 2004. 2 Easy-Radio Software Guide 1-3.pdf.

[FAL] Falcon applications.

[HTT] Rfc 2616 (rfc2616). http://www.faqs.org/rfcs/rfc2616.html.

[JAVa] The java communications api. http://java.sun.com/products/javacomm/index.jsp.

[JAVb] Rbc api javadoc.

[KNO] Knopflerfish. http://www.knopflerfish.org/index.html.

[NB05a] Stephan Kei Nufer and Mathias Buehlmann. Adaptive building intelligence – administration tool,
2005.

[NB05b] Stephan Kei Nufer and Mathias Buehlmann. Remote building control protocol – a protocol that
is used to transfer building data. Technical report, University of Applied Sciences Rapperswil,
Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology, Zurich,
Switzerland, 2005.

[NB05c] Stephan Kei Nufer and Mathias Buehlmann. Remote building control (rbc) api – an api that
supports custom agent application to remotely control a building. Technical report, University
of Applied Sciences Rapperswil, Switzerland and Institute of Neuroinformatics, Swiss Federal
Institute of Technology, Zurich, Switzerland, 2005.

[OPT05] Optfilter, 2005. 8 OptFilter.xls.

[OSG] Osgi alliance. http://www.osgi.org.

95

http://en.wikipedia.org/wiki/Alternating_Bit_Protocol
http://ws.apache.org/axis
http://www.faqs.org/rfcs/rfc2616.html
http://java.sun.com/products/javacomm/index.jsp
http://www.knopflerfish.org/index.html
http://www.osgi.org

BIBLIOGRAPHY 96

[RJD04] U. Rutishauser, J. Joller, and R. Douglas. Control and learning of ambience by an intelligent
building. IEEE Transactions on System,Man and Cybernetics Part A, Submitted, 2004.

[RS02] Ueli Rutishauser and Alain Schaefer. Adaptive home automation – a multi-agent approach. Tech-
nical report, University of Applied Sciences Rapperswil, Switzerland and Institute of Neuroinfor-
matics, Swiss Federal Institute of Technology, Zurich, Switzerland, 2002.

[Sch04] U. Schlegel. Expsyst beschreibung, 2004. ExpSyst Beschreibung.doc.

[TAO01] Tsl250r, tsl251r, tsl252r – light to voltage optical sensors, 2001. 7 TAOS TSL250R.pdf.

[TAO03] Sharping the future of lightsensing solutions, 2003. 6 TAOS brochure.pdf.

[TZ03a] Jonas Trindler and Raphael Zwiker. Adaptive building intelligence – an approach to adaptive
discovery of functional structure. Technical report, University of Applied Sciences Rapperswil,
Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology, Zurich,
Switzerland, 2003.

[TZ03b] Jonas Trindler and Raphael Zwiker. Adaptive building intelligence – parallel fuzzy controlling and
learning architecture based on a temporary and long-term memory. Technical report, University
of Applied Sciences Rapperswil, Switzerland and Institute of Neuroinformatics, Swiss Federal
Institute of Technology, Zurich, Switzerland, 2003.

[VIS99] Srn-2000c/pc serie – installationsanleitung, 1999. 5 VISONIC SRN2000.pdf.

[WIK] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Main Page/.

[WIR05] Wireless battery powered presence detector, 2005. 9 Wireless PD.pdf.

[XER] Xerces java parser 1.4.4 release. http://xml.apache.org/xerces-j/.

term project, July 2005

http://en.wikipedia.org/wiki/Main_Page/
http://xml.apache.org/xerces-j/

Index

ABI System Architecture, 23
Communication Subsystem, 29
System Components overview, 23

Bundle Dependencies, 28
Bus and device abstraction, 24
Discovery Service, 32
Remote control, 28
Remote service, 31
Structure abstraction, 27

Analysis of the new ABI System
ABI Area bundle, 18
Enhanced Presence Detectors, 17
Falcon bus, 9
Falcon technical documents, 9
Future considerations, 20

LON bus integration, 21
Two API’s, 20

General Aspects, 18
System requirements, 18
System solution, 19

Property Concept, 12
Domain Model, 12
PropertyProvider, 13
PropertyType, 13

Server Discovery Service, 18
ServiceTracker, 18

The Client Server Model approach, 14
Overview, 14
Proprietary Solution, 17
RMI, 15
SOAP, 16

The Falcon devices, 9
Falcon Communicator, 10
Falcon Light-Actuator, 11
Falcon Presence-Daylight Device, 10
Falcon System overview, 9
Remote Control, 11

Analysis of the previous ABI System
ABI Area Bundle, 7
Hot-plug, 7
Issues, 6
OSGi Advantages, 7
OSGi Discussion, 7
OSGi Drawbacks, 8
Other Issues, 7
Our Objectives, 8
Wireadmin, 6

Design and Implementation
ABI Area Bundle, 63

Area XML file, 66
Libraries, 66

ABI Core Bundle, 42
Abstract Bus Concept, 44
Actuator services, 44
Flavours, 51
Property Concept, 45
Sensor services, 43

ABI Discovery Service Bundle, 85
ABI Falcon Bundle, 53

Falcon Bus, 54
Hardware control, 56
Libraries, 61

ABI RBC Server
Service Trackers, 70
Virtual producer, 80

ABI RBC Server Bundle, 68
Communication Subsystem, 73

ABI Remote Service Bundle, 82
Bundle overview, 41
Notes, 41

Introduction
Adaptive Building Intelligence (ABI), 2
DAI, 3
Document structure, 4
Feller AG, 2
Forecast, 4
History, 2
Institue of Neuroinformatics, 2
Multi-Agent ABI System, 3
OSGi ABI System, 3
Preconditions, 3
Retrospection, 2

RBC API Specification, 37
Overview, 37
Two API implementations, 37

RBC Protocol Specification, 33
Applied example, 35
RBC Message Format, 33
RBC Messages, 34

Common RBC Message Packets, 35
RBC Area Message Packets, 35
RBC Bus Message Packets, 35
RBC Control Message Packets, 35

97

INDEX 98

RBC Device Message Packets, 35
RBC Update Message Packets, 35

term project, July 2005

	I Introduction
	Introduction
	Retrospection
	History
	Adaptive Building Intelligence (ABI)
	Terms and definitions
	Preconditions
	Document structure

	II Analysis
	Analysis of the previous ABI System
	ABI System issues
	Wire Admin Issues
	Other Issues

	OSGi Discussion
	Our Objectives

	Analysis of the new ABI System
	Introduction
	The Falcon devices
	The Falcon Communicator
	The Falcon Presence-Daylight Device
	The Falcon Light-Actuator

	Remote Control (RC)
	Property Concept
	The Client Server Model approach
	Overview
	Distributed System Solutions
	RMI
	SOAP
	A proprietary solution

	Enhanced Presence Detectors
	Server Discovery Service
	ABI Area bundle
	General Aspects
	Future considerations
	Providing two API's
	LON bus integration

	III Architecture
	ABI System Architecture
	Introduction
	System Components overview
	Bus and device abstraction
	Property Provider
	Basic functionality
	Modification Notification
	Summary

	Structure abstraction
	Remote control
	Basic functionality
	Dependencies
	Communication Subsystem
	Application Layer Protocol

	Remote service
	Basic functionality
	Dependencies
	Remote Service Protocol
	Notes

	Discovery system

	RBC Protocol Specification
	General purpose
	RBC Message Format
	RBC Messages
	Applied example

	RBC API Specification
	General purpose

	IV Design and Implementation
	Introduction
	Bundle overview
	Notes

	ABI Core Bundle
	Overview
	Sensor services
	Actuator services
	Abstract Bus Concept
	Property Concept
	Overview
	Implementing a new Device
	PropertyProvider code inspection

	Flavours
	ABIBusStatus flavour
	ABIDeviceStatus flavour
	PropertyList flavour

	ABI Falcon Bundle
	Overview
	Falcon Bus
	Falcon Presence Daylight Service

	Hardware control
	FalconCommunicator
	FalconDataListener
	FalconDevice
	FalconServiceImpl
	FalconDataDispatcher
	FalconDataLogger

	Libraries

	ABI Area Bundle
	Overview
	Area updates
	AreaStatus flavour
	Area XML file
	Libraries

	ABI RBC Server Bundle
	Overview
	Service Trackers
	Communication Subsystem
	Connection Listener
	Connection
	MessageHandler
	Message
	IMessage Dispatcher and Message Dispatcher
	Message types
	Synchronous messages calls
	Dataflow summary
	Extendability

	Virtual producer

	ABI Remote Service Bundle
	Overview
	Further notes

	ABI Discovery Service Bundle

	V Appendix, Glossary and Bibliography
	Appendix
	Remote Service Protocol
	Introduction
	Defined messages
	Remote Presence Service Message Packets
	connectpresence message
	getpresence message
	setpresence message

	Discovery Service Protocol

	Glossary

