
RBC Protocol specification

Remote Building Control Protocol
a protocol that is used to transfer building data

Stephan Kei Nufer Mathias Buehlmann
<snufer@ini.phys.ethz.ch> <mbuehlma@ini.phys.ethz.ch>

Advisors
Prof. Dr. Rodney Douglas, Institute of Neuroinformatics, ETH/University Zurich

Prof. Dr. Josef Joller, University of Applied Sciences Rapperswil
Tobi Delbruck, Group Leader, Institute of Neuroinformatics, ETH/University Zurich

A cooperation between

Computer Science Department Institute of Neuroinformatics

University of Applied Science Rapperswil University and ETH Zurich

Oberseestrasse 10 Winterthurstrasse 190

8640 Rapperswil, Switzerland 8057 Zurich, Switzerland

http://www.hsr.ch http://www.ini.unizh.ch

Compiled: February 7, 2006

Typeset by LATEX

Preface

by Nufer Stephan Kei and Buehlmann Mathias

This part of the documentation is also part of the term project and has been used in the RBC Server [NB05a]
and the RBC API[NB05b]. The protocol might be extended within the upcoming diploma thesis.

By all means this protocol is in its starting phase and is still being elaborated. When performing any
alterations to the protocol would you please modify and add any changes accordingly? All the tools are
provided with all the accompanying documentation.

Thanks. We hope that it helps. Good luck!

Stephan and Mathias.

ii

iii

Abstract

The Remote Building Control Protocol (RBC) is an application layer protocol for distributed, collabo-
rative, hypermedia information systems. The format of RBC describes a generic, stateless, protocol which
can be used for many tasks beyond its use for building intelligence. When comparing HTTP with RBC one
will notice that the header is built approximately the same way. In fact from the perspective of the HTTP
([HTT]) header, RBC has completely been resembled mostly following the guidelines of the HTTP header
except that RBC still distinguishes between a body and a header part in the sense that its splits certain
type of fields into a header and a body part. Therefore in contrast to other well-known protocols such as
HTTP this protocol does not support the typing and negotiation of data representation, allowing systems to
be built independently of the data being transferred. This protocol has been applied in games that simply
exchange commands and necessary updates.

In this context the RBC Protocol defines additional parameters which need to be adhered by client and
server API’s. Particular features of such are: Non-blocking and blocking message calls. In the Context of
the ABI System such messages are also know as Remote Service Invocation (RSI), since the ABI System
itself is implemented using a OSGi Framework ([OSG],[KNO]) that is completely build up of services.

term project, July 2005

Table of Contents

I Introduction 1

1 Introduction 2

1.1 Overview . 2

1.2 Document structure . 2

II RBC Protocol Specification 4

2 RBC Messages 5

2.1 General . 5

2.2 Overall Operation . 5

2.3 Notational Conventions and Generic Grammar . 6

2.4 Basic Rules . 6

2.5 Message-Types . 7

2.5.1 Message Header . 7

2.5.2 Message Body . 7

2.6 RBC Message revisited . 8

2.7 Defined messages . 8

2.8 field-names and field-values . 9

2.8.1 deviceurl . 9

2.9 Common RBC Message Packets . 9

2.9.1 reject message . 9

2.9.2 return message . 10

2.10 RBC Control Message Packets . 11

iv

TABLE OF CONTENTS v

2.10.1 peer-id message . 11

2.10.2 disconnectclient message . 12

2.10.3 keepalive message . 13

2.11 RBC Bus Message Packets (RSI) . 14

2.11.1 showbuses message . 14

2.11.2 connectbus message . 15

2.11.3 disconnectbus message . 16

2.12 RBC Device Message Packets (RSI) . 17

2.12.1 showalldevices message . 17

2.12.2 showdevices message . 18

2.12.3 regdevserv message . 18

2.12.4 deregdevserv message . 19

2.12.5 setproperties message . 20

2.12.6 getproperties message . 21

2.13 RBC Area Message Packets (RSI) . 23

2.13.1 createarea message . 23

2.13.2 removearea message . 23

2.13.3 showareas message . 24

2.13.4 adddevtoarea message . 25

2.13.5 alterdevarealocation message . 25

2.13.6 remdevfromarea message . 26

2.13.7 showdevinarea message . 26

2.14 RBC Update Message Packets . 26

2.14.1 propertiesupdate message . 28

2.14.2 busupdate message . 29

2.14.3 deviceupdate message . 29

2.14.4 areaupdate message . 30

term project, July 2005

TABLE OF CONTENTS vi

III Glossary and Bibliography 31

3 Glossary 32

term project, July 2005

List of Figures

1.1 RBC Protocol . 3

2.1 The RBC Message Format . 8

vii

List of Tables

2.1 Augmented BNF . 6

2.2 Basic rules . 6

2.3 Bus states . 14

2.4 Bus state combination . 14

2.5 Datatypes and their constraints . 22

2.6 Device states . 29

2.7 Update-types . 30

3.1 Glossary . 32

viii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Overview

The purpose of this document is to describe the protocol to be used for exchanging information between
the ABI System (RBC Server Bundle) and custom application programs that need guaranteed reliable
transmission of data in a simple, ascii-based protocol. One major use of this protocol is to enable applications
to retrieve changing device information and on the other hand commands which are executed in the RBC
Server similar to remote procedure calls. Hereby it provides a standard that all ABI client applications need
to adhere when communicating to the ABI System.
The reason why such a protocol is applicable in our context is although OSGi ([OSG]) has emerged into a
very powerful and adaptive system framework, it also has its liabilities such as:

• High Complexity and ”hard-wired” dependencies

• Long period of vocational adjustment

• Difficult maintenance

• Complex testing and debugging methods

Those negative forces need to be circumvented in a way that it does not affect the hot-plugging capabilities.
To counteract this issue we developed a distributed model 1.1 that makes use of this protocol that helps to
separate server from any client concerns. The achievement is obvious. We want to provide the ability to
develop any client system independently without having to put up with the OSGi Framework all the time.
Specifically speaking we want to develop a system that can provide the capability to plug an AI-Client that
takes control over the ABI System in a distributed fashion.

1.2 Document structure

This specification includes the following core section which describes the message format.

1. Introduction

2. Common RBC Message Packets

3. Control RBC Message Packets

4. RBC Bus Message Packets

5. RBC Device Message Packets

2

1.2. DOCUMENT STRUCTURE 3

6. RBC Area Message Packets

7. RBC Update Message Packets

8. Appendix, Glossary and Bibliography

Figure 1.1: RBC Protocol

term project, July 2005

Part II

RBC Protocol Specification

4

Chapter 2

RBC Messages

2.1 General

For the remainder of this document, the requester is referred to as the client, while the target of the request
is called the server.

RBC messages consist of requests from client to server and responses from server to client.

The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD
NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as de-
scribed in RFC 2119 ([RFCb]).

2.2 Overall Operation

Clients can consume services which take almost no time to complete. On the other hand the services may
take considerable amount of time to complete. So it’s important that the Client-API and also the Server-API
provides both blocking and non-blocking API calls. This can be easily done in an API level.
With a blocking API client will hang till the operation completes. In other words once invoked, the client
will keep blocking till it gets the response (if any) from the service. This is very useful method when invoking
ABI services (RSI’s) that do not take long time to complete and the hanging in the client side is negligible.
This will be a huge drawback in the client side performance, if the operation takes considerable amount of
time.
A non blocking API will provide the client to use a callback mechanism (or polling mechanism) to get the
responses (if any) for a service invocation. Client gets this response in two ways. A good way, which has
been applied in the reference implementation of the RBCAPI ([NB05b]) is some sort of callback. Specifically
speaking the RBC is implemented using the dispatcher principle. Concretely this means that almost each
message type that a client or the server is interested in has a corresponding message handler that is registered
to a dispatcher. Hereby each message is processed by the competent handler upon dispatching.

The protocol used to send the RBC-message can be categorized mainly in to two types.

• Unidirectional: Client → Server OR Server → Client

• Bi-Directional: Client ↔ Server

5

CHAPTER 2. RBC MESSAGES 6

2.3 Notational Conventions and Generic Grammar

Most of the mechanisms specified in this document are described in an augmented Backus-Naur Form (BNF)
similar to that used by RFC 822 ([RFCa]).

Augmented BNF Description
name = definition The name of a rule is simply the name itself (without any enclosing ”<” and

”>”) and is separated from its definition by the equal ”=” character. White
space is only significant in that indentation of continuation lines is used to indi-
cate a rule definition that spans more than one line. Certain basic rules are in
uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets
are used within definitions whenever their presence will facilitate discerning the
use of rule names.

”literal” Quotation marks surround literal text. Unless stated otherwise, the text is
case-insensitive.

rule1 | rule2 Elements separated by a bar (”|”) are alternatives, e.g., ”yes | no” will accept
yes or no.

(rule1 | rule2) Elements separated by a bar (”|”) are alternatives, e.g., ”yes | no” will accept
yes or no.

rule The character ”” preceding an element indicates repetition. The full form
is ”¡n¿*¡m¿element” indicating at least ¡n¿ and at most ¡m¿ occurrences of
element. Default values are 0 and infinity so that ”*(element)” allows any
number, including zero; ”1*element” requires at least one; and ”1*2element”
allows one or two.

[rule] Square brackets enclose optional elements
implied *LWS The grammar described by this specification is word-based. Except where noted

otherwise, linear white space (LWS) can be included between any two adjacent
words (token or quoted-string), and between adjacent words and separators,
without changing the interpretation of a field. At least one delimiter (LWS
and/or separators) MUST exist between any two tokens (for the definition of
”token” below), since they would otherwise be interpreted as a single token.

Table 2.1: Augmented BNF

2.4 Basic Rules

Augmented BNF Description
OCTET: = ¡any 8-bit sequence of data¿
OCTETCR: = ¡any 8-bit sequence of data without CR and LF¿
CHAR: = ¡any US-ASCII character (octets 0 - 127)¿
CR: = ¡US-ASCII CR, carriage return (13)¿
LF: = ¡US-ASCII LF, linefeed (10)¿
SP: = ¡US-ASCII SP, space (32)¿
HT: = ¡US-ASCII HT, horizontal-tab (9)¿
<>: = ¡US-ASCII double-quote mark (34)¿

Table 2.2: Basic rules

RBC defines the sequence CR LF as the end-of-line marker for all protocol elements.

CRLF = CR LF

Hexadecimal numeric characters are used in several protocol elements.

term project, July 2005

2.5. MESSAGE-TYPES 7

HEX = "A" | "B" | "C" | "D" | "E" | "F"
| "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

Body field values may consist of words separated by LWS or special characters.

token = 1*<any CHAR except CTL’s or separators>
separators = "(" | ")" | "<" | ">" | "@"

| "," | ";" | ":" | "\" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

The TEXT rule is only used for descriptive field contents and values that are not intended to be interpreted
by the message parser.

TEXT = <any OCTET and including LWS>

2.5 Message-Types

RBC messages generally consist of requests from client to server and responses from server to client.
Unlike HTTP ([HTT]) this protocol allows a third one called message. Messages of type message can be
sent from either the client or the server. The crucial difference between message to regular request-response
messages is that it’s implying a non-blocking one-way message.
All types of message consist of a message name and a message type, zero or more body fields, an empty line
(i.e., a line with nothing preceding the CRLF) indicating the end of the body fields.
In the interest of robustness, servers SHOULD ignore any empty line(s) received where a message type or a
message name is expected. In other words, if the server is reading the protocol stream at the beginning of a
message and receives a CRLF first, it should ignore the CRLF.
The CRLF at the end of the last property indicate the end of the message and MUST be adhered.

RBC-message = Request | Response | Message; RBC messages

Formally the message is defined as:

generic-message = messagename CRLF
messagetype CRLF
*(property CRLF)
CRLF

messsagename = OCTETWCR
messagetype = "Request" | "Response" | "Message"

2.5.1 Message Header

RBC header distinguishes from the HTTP header in the sense that it does not provide any version informa-
tion. Basically the header consists of the following two fields which are followed by CRLF.

2.5.2 Message Body

RBC body fields, applies the same generic format as the header given by HTTP. Each header field consists
of a name followed by a colon (”:”) and the field value. Field names are case-insensitive. The field value
MAY be preceded by any amount of LWS, though a single SP is commonly not preferred.

term project, July 2005

CHAPTER 2. RBC MESSAGES 8

Figure 2.1: The RBC Message Format

property = field-name ":" field-value
field-name = OCTETWCR
field-value = OCTETWCR

2.6 RBC Message revisited

Having explained the basic protocol capabilities in a formal we can now define how such a packet (message) is
structured in an informal way. We distinguish between three different type of messages: Request, Response
and Message. The figure 2.1 illustrates the simply structured message format that need to be adhered by
both parties (Client and Server). When performing blocking calls the clients creates a Request packet with
an accompanying message-type(See 2.5). The Server will dispatch the message to the appropriate message
handler that processes the message. When the server has completed all necessary tasks the server will send
the appropriate Response message back to the client. When performing non-blocking calls the client simply
structures a message of type message. Such kinds of messages are usually applied when sending commands
which either do not provide any meaningful response message besides the common success response message.
We can meet similar proceedings in the Apache Axis project ([Apa]). This also provides a blocking and a
non-blocking API.

2.7 Defined messages

All fields which are currently specified by the protocol are now given regardless of their message type (request,
response or message)

messagename = reject
| peer-id
| disconnectclient
| keepalive
| showbuses
| connectbus
| disconnectbus
| showalldevices
| showdevices
| regdevserv
| deregdevserv
| setproperties
| getproperties
| createarea
| removearea
| adddevtoarea
| alterdevarealocation
| remdevfromarea

term project, July 2005

2.8. FIELD-NAMES AND FIELD-VALUES 9

| showdevinarea
| propertiesupdate
| busupdate
| deviceupdate
| areaupdate

A detailed description of all valid field-values associated with one of those message names listed above will
be given (See section: 2.8) or further by each specific message.

2.8 field-names and field-values

Certain field-names such as deviceurl, busid and areapid need a distinct format:

2.8.1 deviceurl

The deviceurl is used to identify a device. It is unique and is structured based on the ”http” scheme.
Unfortunately this schemes can currently not be documented since it has been adapted from the previous
system. But it needs to be defined at a later point of time! Urgently! It’s really is really messy!

2.9 Common RBC Message Packets

Common RBC Messages is a message packet category that defines special message packets which actually
don’t have anything to do with our context. However they provide necessary features which are quite valuable
for a protocol to have when dealing with error afflicted messages and such.

2.9.1 reject message

Sometimes it is appropriate to reject messages which are not supported by the server and perhaps also by the
client application. This protocol specification suggests sending reject messages to the corresponding station
that initiated the request when the message format cannot be understood correctly.
Additional fields can provide information which indicates its cause. In the ABI System you observe reject
messages when sending arbitrary (not supported) messages to the server station.

term project, July 2005

CHAPTER 2. RBC MESSAGES 10

Message-Name: reject
Scope: any
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: A reject message is usually thrown (sent) when the Message-Name (Handler or

Command) is either not supported or not implemented and or registered. If the
Client sends a reject message the server shouldl drop it since it does not reject,
reject messages. Generally speaking though reject messages can be initiated
by all participants but each of them don’t necessarily need to be capable of
processing the message. Therefore the scope has been stated as any.

Body parameters:

1. request: Name of rejected message

2. reason: Reason of rejection

3. message: Additional field for any description

Message example:

2.9.2 return message

Messages are typically sent as request-response messages. Nevertheless it is still desirable to have the possi-
bility to send the messages asynchronously. To support this feature all messages can be initiated and sent by
a type called message which indicates a non-blocking message or call. In order to accomplish this feature, a
non-blocking API needs to be implemented that fulfills this requirement. This applies for the client as well
as the server API. Of course it’s not meant to send all messages in the though of gaining time because the
protocol does not provide any sequence numbers to match incoming and outgoing asynchronous calls again.
Although it is possible to simply define some kind of handler that is called upon reception when using a
non-blocking call.

The RBC API reference API implementation ([NB05b]) makes use of such a call when issuing an non-
blocking call that retrieves all devices that can be found within the ABI System. This makes sense since it
might take a while in order to retrieve all device information from the ABI System since each device can be
hooked up to different buses which are possibly connected to different hardware and technologies and might
cause different reaction time.
However this specification requires a non-blocking API that enables this kind of messaging.

term project, July 2005

2.10. RBC CONTROL MESSAGE PACKETS 11

Message-Name: return
Scope: Server → Client
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: Each messages described below may provide a common return message...
Body parameters:

1. success: {true, false}

2. comment: Additional field for any description

Message example:

2.10 RBC Control Message Packets

RBC Controlc Message Packets define all messages which have an associating context to control messages.
Most application layer protocols support control packets that provide necessary information about clients
or servers which i.e. provide remote peer information and such. So does this one. On one side ensure the
compatibility and on the other to control the connection (establishment and termination). Other messages
are to be included later such as the entire authentication procedure.

2.10.1 peer-id message

The peer-id message provides a simple check message between the participants. Although the protocol im-
plementation MUST NOT include this feature since it would actually be the task of an entire authentication
process mentioned above.

term project, July 2005

CHAPTER 2. RBC MESSAGES 12

Message-Name: peer-id
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The peer-id is usually requested by the client and checked by the server for

compatibility.
Body parameters:

1. REQ, software-version: Client software version

2. RES, accepted:{true, false}

3. RES, comment:Additional field for any description

Request-Response example:

2.10.2 disconnectclient message

Every client which holds a connection to the server has its own unique peer-id. Evidentially it is quite
practical to provide a possibility to manually disconnect from the server. Technically it does do much but
since most protocols provide this feature we added it as well.

Message-Name: disconnectclient
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The disconnectclient command is sent by the client upon termination. It has to

be noted that this isn’t a requirement. It’s only a suggestion to be implemented
as it helps the server to do cleanups by a predicting way.

Body parameters: Empty body

Message example:

term project, July 2005

2.10. RBC CONTROL MESSAGE PACKETS 13

2.10.3 keepalive message

Every client needs to ascertain server availability. This is necessary since a client is always allowed to just
listen for update messages (See section: 2.14) which would not be received upon a server or network problem.
In order to counteract this issue a keep alive message is suggested.

Message-Name: keepalive
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The keepalive message command is sent by the client in order to determine

server availablity.
Body parameters: Empty body

Request-Response example:

term project, July 2005

CHAPTER 2. RBC MESSAGES 14

2.11 RBC Bus Message Packets (RSI)

RSI Messages (Remote Service Invocation Messages) are messages which are quite similar to Remote Proce-
dure Calls (RPC)’s. In contrast to Remote procedure calls this protocol is capable of supporting a bidirec-
tional communication channel that does not require any third party server installation (i.e. Apache Axis)
or something like an rmiregistry as it is used in Java RMI. It is simple and well suited for the ABI System.
Considering that all messages can be invoked synchronously (blocking) and asynchronously (non-blocking)
as well.

2.11.1 showbuses message

The showbuses message is queried by the client with the intention of receiving all available buses currently
know by the system. Hereby following status codes have been defined for this purpose:

State Description
STATE UNINITIALIZED = 0x00 A bit value representing an uninitialized bus state, e.g.

upon construction time.
STATE CONNECTED = 0x02 A bit value representing a connected bus
STATE ATTACHED = 0x04 A bit value representing a attached bus

Table 2.3: Bus states

Whereas we can derive following combinations:

State combination Description
STATE CONNECTED & STATE ATTACHED ⇒ Bus is available
STATE CONNECTED & ¬STATE ATTACHED ⇒ Bus is unavailable
¬STATE CONNECTED & STATE ATTACHED ⇒ Bus is attached but no connecting com-

mand was issued yet.
¬STATE CONNECTED & ¬STATE ATTACHED ⇒ this bus was attached before, and now re-

connect attempt will be taken when it be-
comes attached again.

Table 2.4: Bus state combination

term project, July 2005

2.11. RBC BUS MESSAGE PACKETS (RSI) 15

Message-Name: showbuses
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The showbuses command returns all available buses and their current state.

Whether if they are connected or not. Client sends this message without any
extra parameter(body).

Body parameters:

1. REQ, {empty body}

2. RES1, busid: The unique bus identifier i.e. falcon.bus-1.0

3. RES1, busstate: The state of the bus according to the previous description

Request-Response example:

2.11.2 connectbus message

Message-Name: connectbus
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The connectbus command connects a certain bus (busid) to the ABI System
Body parameters:

1. busid: The unique bus identifier i.e. falcon.bus-1.0

Message example:

1For each bus that has been found a tuple of {busid,busstate} will be sent

term project, July 2005

CHAPTER 2. RBC MESSAGES 16

2.11.3 disconnectbus message

Message-Name: disconnectbus
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The disconnectbus command disconnects a certain bus (busid) to the ABI

System. All registered devices of that bus will hereby get unregistered.
Body parameters:

1. busid: The unique bus identifier i.e. falcon.bus-1.0

Message example:

term project, July 2005

2.12. RBC DEVICE MESSAGE PACKETS (RSI) 17

2.12 RBC Device Message Packets (RSI)

Device Messages Packets define all messages which have an associating context to devices. All messages
defined here are messages which are initiated by the client as either of type request-response or message.

2.12.1 showalldevices message

Message-Name: showalldevices
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The showalldevices command returns all registered devices(multiples)from the

ABI System
Body parameters:

1. REQ, {empty body}

2. RES1, deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

Request-Response example:

1Several devices maybe appended

term project, July 2005

CHAPTER 2. RBC MESSAGES 18

2.12.2 showdevices message

Message-Name: showdevices
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The showdevices command returns all registered devices (multiples) connected

to a given bus from the ABI System.
Body parameters:

1. REQ, busid: The unique bus identifier i.e. falcon.bus-1.0

2. RES1, deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

Request-Response example:

2.12.3 regdevserv message

Message-Name: regdevserv
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The regdevserv command registers a new device service. Commonly a devices

service represents a physical device. Virtual devices are possible though. i.e.
A software which is checking for presence.

Body parameters:

1. deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

Message example:

1Several devices maybe appended

term project, July 2005

2.12. RBC DEVICE MESSAGE PACKETS (RSI) 19

2.12.4 deregdevserv message

Message-Name: deregdevserv
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The deregdevserv command deregisters an accounted device service.
Body parameters:

1. deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

Message example:

term project, July 2005

CHAPTER 2. RBC MESSAGES 20

2.12.5 setproperties message

Message-Name: setproperties
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The setproperties command can be initiated by three different

type of persona. (triggers)

• Physical user i.e. Pressing light switch in a room

• AI (RBC Server)

• Client (Client ABI Software) authenticated by login

The command sets multiple device properties. i.e. A light can be
either switched on or switched off; Blinds can be set into different
positions.

Body parameters:

1. deviceurl: The unique device identifier i.e.
http://0.0.0.0:65/...

2. trigger: The originator of the message. (Name of the Client)
i.e. The login name

3. propertyname: The custom property of a concrete device.
i.e. A Falcon device

4. propertyvalue: The custom property value of a concrete de-
vice. i.e. A Falcon device

Message example:

According to the term-project documentation, every device does have its own set of well-defined properties.
All writeable properties are authorized to be set by the client if desired. In order to submit changing
properties such a message or command is necessary. The client-API uses this command when i.e. changing
the lightstatus from ON to OFF or vice-versa.

term project, July 2005

2.12. RBC DEVICE MESSAGE PACKETS (RSI) 21

2.12.6 getproperties message

Message-Name: getproperties
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The getproperties command can only be initiated the client. The

command requests all available properties of a device. i.e. A light
can be either switched on or switched off or Blinds can be set into
different positions.

Body parameters:

1. REQ, deviceurl: The unique device identifier i.e.
http://0.0.0.0:65/...

2. RES, deviceurl: The unique device identifier i.e.
http://0.0.0.0:65/...

3. RES1, propertyname: The custom property of a concrete
device. i.e. A falcon device

4. RES1, propertyvalue: The custom property value of a con-
crete device. i.e. A falcon device

5. RES1, readable: Is the property readable?

6. RES1, writeable: Is the property writeable? Which indicates
that it can be set. i.e. A light.

7. RES1, type: The datatype of the propertyvalue. depending
on the datatype they may be a bunch of constraints associ-
ated with that property. For instance an integer or a float
provide a {min,max} pair which define a range, etc.

Request-Response example:

1One single device may have several properties

term project, July 2005

CHAPTER 2. RBC MESSAGES 22

According to the term-project documentation, every device does have its own set of well-defined properties.In
order to query this information from these devices, this message or command is necessary. The client-API
uses this command when obtaining detailed information about a device i.e. if the presence devices indicate
presence or in order to retrieve the current measured daylight value.
Referring to the type constraint, this protocol defines 6 datatypes which can be seeing as a small IDL. Again,
each type may have associating constraints which will be appended.
The value of the field type should match one of the datatypes listed in the first column of table 2.5.

Datatype Constraint
EnumType list of enums: i.e.

enum:ON
enum:ON

IntegerType {min, max} pair. i.e.
min:0
max:128

FloatType {min, max} pair. i.e.
min:0
max:128

DoubleType {min, max} pair. i.e.
min:0
max:128

BooleanType NONE
StringType Given as a regular expression(regex) i.e. we can define a date

format:([0-9]+)/([0-9]+)/([0-9]4)

Table 2.5: Datatypes and their constraints

The protocol specification suggests to implement an API that provides an interface that defines all ”custom”
datatypes 2.5 according to the RBC specification. All concrete datatypes would hereby need to implement to
this interface. We suggest naming the datatypes according to the names specified in 2.5. Further we suggest
of providing a validation scheme in form of a method that checks corresponding values. Note that this is
necessary since every datatype has i.e. A min or max value or if we go further let’s say an EnumType would
need to check if the value string is equal to one of those enumerated values. You can compare the entire
property concept (including) the propertytype with a small middleware customized for this kind of purpose.
It defines a small set of an IDL in order that we know what kind of properties, each property provides. I.e.
A light might be able to be switched off and on. So we provide the custom tags: writeable, readable and
a set of predefined types (IDL) to define a property. With that simple locomotive a client application can
easily visualize the properties without having to know about the concrete server in the first place. I.e. A
sample GUI application can be accomplished like that:

• A light switch can be visualized, since it’s writeable and can therefore be illustrated using a combobox
since it’s an EnumType or BooleanType.

• A presence sensor might be visualized using a label since its not writeable but readable.

Want more information? Consult the term-project documentation ([NB05a]).

term project, July 2005

2.13. RBC AREA MESSAGE PACKETS (RSI) 23

2.13 RBC Area Message Packets (RSI)

RBC Area Message Packets define all messages which have an associating context to areas. All messages
defined here are messages which are initiated by the client as either of type request-response or message.

2.13.1 createarea message

Message-Name: createarea
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The createarea command creates a new area with a given location name. i.e.

55.G.74
Body parameters:

1. areapid: An unique area identifier i.e. http://Room 55.G.74

2. location: The Name of the area i.e. 55.G.74

Message example:

2.13.2 removearea message

Message-Name: removearea
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The removearea command removes an existing area from the ABI System
Body parameters:

1. areapid: An unique area identifier i.e. http://Room 55.G.74

Message example:

term project, July 2005

CHAPTER 2. RBC MESSAGES 24

2.13.3 showareas message

Message-Name: showareas
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The showareas command retrieves a list of all created command retrieves a list

of all created (registered) areas from the the ABI System.
Body parameters:

1. REQ, {empty body}

2. RES1, areapid: An unique area identifier.
i.e. http://Room 55.G.74

3. RES1, location: The name of the area
i.e. 55.G.74

Request-Response example:

1The respond may contain multiple areas

term project, July 2005

2.13. RBC AREA MESSAGE PACKETS (RSI) 25

2.13.4 adddevtoarea message

Message-Name: adddevtoarea
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The adddevtoarea command adds a device with a given deviceurl to an existing

area given by the areapid.
Body parameters:

1. areapid: An unique area identifier i.e. http://Room 55.G.74

2. deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

3. detailedlocation: Provide a name where the device can be found or in
which area the device is categorized. i.e. window

Message example:

2.13.5 alterdevarealocation message

Message-Name: alterdevarealocation
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The alterdevarealocation command alters the detailed area location of an ex-

isting device’s.
Body parameters:

1. areapid: An unique area identifier i.e. http://Room 55.G.74

2. deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

3. newdetailedlocation: Provide a name where the device can be found or
in which area the device is categorized. i.e. window

Message example:

term project, July 2005

CHAPTER 2. RBC MESSAGES 26

2.13.6 remdevfromarea message

Message-Name: remdevfromarea
Scope: Client → Server
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The remdevfromarea command removes a device with a given deviceurl from

an existing area given by the areapid.
Body parameters:

1. areapid: An unique area identifier i.e. http://Room 55.G.74

2. deviceurl: The unique device identifier i.e. http://0.0.0.0:65/... which
area the device is categorized. i.e. window

Message example:

2.13.7 showdevinarea message

Message-Name: showdevinarea
Scope: Client → Server
Common Message-Type: REQ → RES
Protocol Version: 1.0
Deprecated since: N/A
Description: The showdevinarea command retrieves a list of devices currently accounted in

an area given by the areapid an existing area given by the areapid.
Body parameters:

1. REQ, areapid: An unique area identifier i.e. http://Room 55.G.74

2. RES1, deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

3. RES1, detailedlocation: The detailed location for this this i.e. window

Request-Response example:

2.14 RBC Update Message Packets

RBC Update Message Packets define all messages which have an associating context to server updates. All
messages defined here are messages which are initiated by the server and provided with the message type

1The respond may contain multiple devices

term project, July 2005

2.14. RBC UPDATE MESSAGE PACKETS 27

message only!
When having a glance back to figure 1.1 you will notice that with the event of time there will be quite

some data sent to the server and to the clients. To clarify the issue a short example is given: After having
successfully connected a bus (See section 2.11.2), you might want to register a couple of devices to the the
ABI System (by issuing a regdevserv message defined in section 2.12.3). As soon as the registration has been
completed, you would already receive device data upon any interactions with them. Either by manually
pressing a light switch or when walking by a presence sensor that causes an event to be activated. It might
be order of the day that a whole bunch of clients are interconnected with the RBC server simultaneously.
Thus requiring to send updates of all kinds such as: Device registrations, deregistrations and other messages
(See below) to all participants. Unfortunately they will notice any changes initiated by any device as well
and theses are quite a few compared to the other messages mentioned before. Thus gradually causing many
data packets sent by the server. Frankly speaking tough this is only a question of performance. -
Still, to counteract this issue a form of the publisher subscriber model has been defined. Every device which
has been registered by any participating client needs a subscription. When clients want to be notified about
any propertiesupdates 2.14.1 they need to provide a valid subscription to it before starting to receive any
data of that device. Thus reducing the overhead generated by propertiesupdate messages
Note that other update messages don’t need a subscription since busupdates 2.14.2, deviceupdates 2.14.3
and areaupdate 2.14.4 don’t take place very often. Momentarily every client is authorized to perform any
kind of subscription to any device available in the ABI System. To change this behavior additional messages
need to be defined which actually fall into the RBC Control Message category.

term project, July 2005

CHAPTER 2. RBC MESSAGES 28

2.14.1 propertiesupdate message

Message-Name: propertiesupdate
Scope: Server → Client
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The propertiesupdate command can only be initiated by the server. The com-

mand broadcasts update messages which contain device properties of one device
to all clients. The propertiesupdate command can be initiated by two different
type of persons. (triggers)

• Physical user i.e. Pressing light switch in a room

• AI (RBC Server)

• RBC Client (using setproperty message)

Body parameters:

1. deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

2. timestamp: The current time when the event has been trig-
gered or activated [MM/DD/YY hh:mm:ss:S] (month/day/year
hour:minute:second:millisecond)

3. trigger1:The originator of the message. (Name of the Client) i.e. login
name

4. propertyname1: The custom property of a concrete device. i.e. A falcon
device

5. propertyvalue1: The custom property value of a concrete device. i.e. A
falcon device

Message example:

1The respond may contain multiple device properties

term project, July 2005

2.14. RBC UPDATE MESSAGE PACKETS 29

2.14.2 busupdate message

Message-Name: busupdate
Scope: Server → Client
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The busupdate command can only be initiated by the server. The command

broadcasts busupdate messages to clients. The contents is currently restricted
to: busid and state.
The busupdate is typically sent by the server and initiated by other clients.

Body parameters:

1. busid: The unique bus identifier i.e. falcon.bus-1.0

2. busstatus: The current busstate

Message example:

2.14.3 deviceupdate message

Message-Name: deviceupdate
Scope: Server → Client
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The deviceupdate command can only be initiated by the server. The command

broadcasts update messages to currently connected clients. It is important for
a client to know when new devices are being plugged or removed from the ABI
System. Either by another client or the system itself. That’s why the protocol
specification suggests to broadcast them along when being altered.
The busupdate is typically sent by the server and initiated by other clients.

Body parameters:

1. deviceurl: The unique device identifier i.e. http://0.0.0.0:65/...

2. status: The current device status

Message example:

Device state Description
STATE REGISTERED = 0x01 A bit value representing that a device has been registered
STATE UNREGISTERED = 0x02 A bit value representing that a device has been unregistered

Table 2.6: Device states

term project, July 2005

CHAPTER 2. RBC MESSAGES 30

2.14.4 areaupdate message

Message-Name: areaupdate
Scope: Server → Client
Common Message-Type: Message
Protocol Version: 1.0
Deprecated since: N/A
Description: The areaupdate command can only be initiated by the server. The command

broadcasts update messages to currently connected clients. It is important for
a client to know when new areas are created, deleted from the ABI System.
Either by another client or the system itself.
An areaupdate includes all relevant data that must be know by all participants
such as: All registered devices and their detailed location, the name of the area,
etc. That’s why the protocol specification suggests to broadcast them along.
The areaupdate is typically sent by the server and initiated by other clients
upon area creation,etc.

Body parameters:

1. updatetype: States what has been altered, changed or deleted.
updatetypes[1-5]

2. areapid: An unique area identifier i.e. http://Room 55.G.74

3. location: The name of the area

4. deviceurl1: The unique device identifier i.e. http://0.0.0.0:65/...

5. detailedlocation1: Provide a name where the device can be found or in
which area the device is categorized. i.e. window

Message example:

Update type Description
AREA CREATED = 0x01 A bit value representing that a new area has been created
AREA REMOVED = 0x02 A bit value representing that a new area has been removed
DEVICE ADDED = 0x03 A bit value representing that a new device has been added

to the area
DEVICE REMOVED = 0x04 A bit value representing that an existing device has been

removed from the area
DEVICE LOCATION CHANGED = 0x05 A bit value representing that a the device location has been

altered

Table 2.7: Update-types

1Usually an area provides several devices which need to be retrieved

term project, July 2005

Part III

Glossary and Bibliography

31

Chapter 3

Glossary

Abbreviation Explanation / Comment

ABI Adaptive Building Intelligence
ABI System The ABI System implemented using an OSGi Framework
Apache Axis Apache Axis is an implementation of the SOAP
BNF Backus-Naur Form
Bundles Java JAR archive
HTTP Hypertext Transfer Protocol
IDL
JAR Java Archive
RBC Remote Building Control (Protocol)
RBC Server The Server Bundle of the ABI System
RBC API The protocol abstraction layer API that implements the RBC Protocol
RFC Request for Comments
RMI Remote Method Invocation (Java Technology)
RSI Remote Service Invocation
Service Interface exported by the service provider bundle
SOAP Simple Object Access Protocol (W3C)
OSGi Open Service Gateway initiative

Table 3.1: Glossary

32

Bibliography

[Apa] Rfc 2616 (rfc2616). http://www.faqs.org/rfcs/rfc2616.html.

[HTT] Rfc 2616 (rfc2616). http://www.faqs.org/rfcs/rfc2616.html.

[KNO] Knopflerfish. http://www.knopflerfish.org/index.html.

[NB05a] Stephan Kei Nufer and Mathias Buehlmann. Intelligent, learning system – a new abi system
built on the open services gateway initiative. Technical report, University of Applied Sciences
Rapperswil, Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology,
Zurich, Switzerland, 2005.

[NB05b] Stephan Kei Nufer and Mathias Buehlmann. Remote building control (rbc) api – an api that
supports custom agent application to remotely control a building. Technical report, University of
Applied Sciences Rapperswil, Switzerland and Institute of Neuroinformatics, Swiss Federal Institute
of Technology, Zurich, Switzerland, 2005.

[OSG] Osgi alliance. http://www.osgi.org.

[RFCa] Rfc 822 (rfc822). http://www.faqs.org/rfcs/rfc822.html.

[RFCb] Rfc 2119 (rfc2119). http://www.faqs.org/rfcs/rfc2119.html.

33

http://www.faqs.org/rfcs/rfc2616.html
http://www.faqs.org/rfcs/rfc2616.html
http://www.knopflerfish.org/index.html
http://www.osgi.org
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc2119.html

Index

ABI System, 2
AI Client, 2

Common RBC Message Packets
Reject message, 9
Return message, 10

field-names and field-values, 9

Message-types, 7
Message Body, 7
Message Header, 7
Message overview, 8
Request-Response, Message, 8

Notational Conventions and Generic Grammar, 6
Basic Rules, 6

RBC Area Message Packets (RSI), 23
adddevtoarea message, 25
alterdevarealocation message, 25
createarea message, 23
remdevfromarea message, 26
removearea message, 23
showareas message, 24
showdevinarea message, 26

RBC Bus Message Packets (RSI)
connectbus message, 15
disconnectbus message, 16

RBC Bus Message Packets(RSI), 14
showbuses message, 14

RBC Control Message Packets, 11
disconnectclient message, 12
keepalive message, 13
peer-id message, 11

RBC Device Message Packets (RSI)
deregdevserv message, 19
getproperties message, 21
regdevserv message, 18
setproperties message, 20
showalldevices message, 17
showdevices message, 18

RBC Device Packets (RSI), 17
RBC Protocol, iii
RBC Update Message Packets, 27

areaupdate message, 30
busupdate message, 29
deviceupdate message, 29
propertiesupdate message, 28

34

	I Introduction
	Introduction
	Overview
	Document structure

	II RBC Protocol Specification
	RBC Messages
	General
	Overall Operation
	Notational Conventions and Generic Grammar
	Basic Rules
	Message-Types
	Message Header
	Message Body

	RBC Message revisited
	Defined messages
	field-names and field-values
	deviceurl

	Common RBC Message Packets
	reject message
	return message

	RBC Control Message Packets
	peer-id message
	disconnectclient message
	keepalive message

	RBC Bus Message Packets (RSI)
	showbuses message
	connectbus message
	disconnectbus message

	RBC Device Message Packets (RSI)
	showalldevices message
	showdevices message
	regdevserv message
	deregdevserv message
	setproperties message
	getproperties message

	RBC Area Message Packets (RSI)
	createarea message
	removearea message
	showareas message
	adddevtoarea message
	alterdevarealocation message
	remdevfromarea message
	showdevinarea message

	RBC Update Message Packets
	propertiesupdate message
	busupdate message
	deviceupdate message
	areaupdate message

	III Glossary and Bibliography
	Glossary

