
RBC API

Remote Building Control API
an API that supports custom agent

application to remotely control a building

Stephan Kei Nufer Mathias Buehlmann
<snufer@ini.phys.ethz.ch> <mbuehlma@ini.phys.ethz.ch>

Advisors
Prof. Dr. Rodney Douglas, Institute of Neuroinformatics, ETH/University Zurich

Prof. Dr. Josef Joller, University of Applied Sciences Rapperswil
Tobi Delbruck, Group Leader, Institute of Neuroinformatics, ETH/University Zurich

A cooperation between

Computer Science Department Institute of Neuroinformatics

University of Applied Science Rapperswil University and ETH Zurich

Oberseestrasse 10 Winterthurstrasse 190

8640 Rapperswil, Switzerland 8057 Zurich, Switzerland

http://www.hsr.ch http://www.ini.unizh.ch

Compiled: February 7, 2006

Typeset by LATEX

Preface

by Nufer Stephan Kei and Buehlmann Mathias

This documentation is part of the term project and has been used in the ABI Admin application[NB05a] and
partly also in the RBC Server [NB05b]. The underlying protocol specification which has been implemented
by this API is called RBC Protocol [NB05c]. This API will play a central role in our upcoming diploma thesis.

This document provides additional aid when developing custom client applications for the ABI System.
It explains the concepts that have been applied and most importantly it provides examples on how to use
this API in order not to lose valuable time in any future development activities.

We hope that it helps. Good luck!

Stephan and Mathias.

ii

iii

Abstract The RBC API provides an API Specification that standardize how concrete API implementation
need to be implemented in order to comply to its requirements. Most of the features have already been
defined by the underlying protocol specification called RBC Protocol ([NB05c]).

The purpose of the RBC API is to simplify any future development of custom client applications asso-
ciated with the ABI System in the sense that it provides a compact application layer standard which should
ultimately be implemented by a concrete API that implements the RBC Protocol requirements as it was
prescribed by its specification. This concrete implementation should provide the capability to remotely com-
municate to the ABI System Server in such a way that developers don’t need to put up with the RBC Protocol
anymore. In other words it hides any required background activities such as communicating to the RBC
Server that has been implemented and installed as a separate bundle inside the OSGi Framework([KNO]).

The benefit of such a system is that ABI client applications such as the ABI Admin ([NB05a]) can now
be developed independently without having to deal with the ABI System itself. Thus improving any devel-
opment practices such as complex integration testing, debugging and maintenance remarkably.
Speaking in forecast we want to develop a system that can provide the capability to plug any independent
ABI client that implements different learning methodologies which can be recorded and monitored and is
able to take over the control of the ABI System in a distributed kind of fashion. Thus relocating any building
intelligence to client applications instead of the heavy ABI System, each of which has its own framework
that is logically quite similar to that provided by the ABI System. In contrast to the ABI System though,
the RBC API provides a decent level of abstraction with the result that application programmers don’t even
need to know about the existence of the ABI System in the first place.

Further we introduce two different implementation of the API, briefly skim how they have been imple-
mented and most importantly provide a short tutorial that explains how they are being used in practice.
Finally you will see how easy it is to write your own custom client application that can for instance be a
tool for an administrative purpose such as the ABI Admin ([NB05a]) or for logging environmental data such
as the the simple logging service provided by the tutorial (See chapter: 9) or can even provide an entire
building intelligence.

In the future we want to provide and implement a third implementation of the API that is capable of
supporting any client applications to be installed as a separate OSGi bundle as well. In other words, with
the additional implementation of the RBC API specification we allow any client application to be either
turned into a separate bundle or to be executed in a separate runtime environment means to use the remote
RBC API implementation instead.
The advantages of such an approach is to reduce the overhead that a distributed system commonly brings
along. Depending on the client application such a possibility might be useful or even needed. Imagine an
AI application that suddenly stops to control an area upon a network failure. Nevertheless for the majority
the distributed system solution fits perfectly (With the usage of the remote RBC API implementation).

term project, July 2005

Table of Contents

I Introduction 1

1 Introduction 2

1.1 Overview . 2

1.2 Terms and Definitions . 2

1.3 Document structure . 2

II Analysis 3

2 Analysis 4

2.1 Introduction . 4

2.2 Domain Model . 4

2.3 Dynamics . 5

2.4 Protocol specification . 8

2.5 API abilities and responsibilities . 8

2.6 API Goals . 8

III Architecture, Design and Implementation 9

3 Architecture and Design 10

3.1 Overview . 10

3.2 RBC API Specification . 11

3.2.1 General . 12

3.2.2 Abstract Classes . 12

3.2.2.1 Area . 12

iv

TABLE OF CONTENTS v

3.2.2.2 Device . 12

3.2.3 Interfaces . 13

3.2.3.1 Property . 13

3.2.3.2 ABISystem . 14

3.2.3.3 BusMultiplexer . 14

3.2.3.4 Bus . 15

3.2.3.5 PropertyType . 15

3.2.3.6 PropertyChangeListener . 17

3.2.3.7 DeviceRegistrationListener . 17

3.2.3.8 AreaRegistrationListener . 17

3.2.4 Exceptions . 18

4 Implementation 20

4.1 Introduction . 20

4.2 Remote RBC API implementation (RBCRemoteImpl) . 22

4.2.1 Overview . 22

4.2.2 Communication Subsystem . 22

4.2.3 Code inspection . 22

4.2.3.1 ABISystemImpl and InternalABISystem . 23

4.3 Dummy RBC API implementation (RBCDummyImpl) . 24

4.3.1 Overview . 24

4.3.2 Code inspection . 25

4.4 General aspects and principles . 26

4.4.1 Lazy Acquisition Principle . 26

4.4.2 Remote Proxy Principle . 27

IV RBC API Tutorial 28

5 Introduction 29

5.1 Introduction . 29

5.2 Accompanying Executables and Code . 29

term project, July 2005

TABLE OF CONTENTS vi

6 Installation 31

6.1 OSGi Framework installation and startup . 31

6.1.1 Starting the OSGi Framework . 31

6.1.2 Installing the bundles with the GUI . 31

6.1.3 Installing the bundles with telnet . 32

6.2 RBC API installation . 33

7 Creating your first RBC Application 35

7.1 The SimpleLightGUI Application . 35

7.1.1 Introduction . 35

7.1.2 Code inspection . 36

7.1.3 Running the example . 39

8 How to use Areas in a RBC Application? 41

8.1 The SimpleAreas Application . 41

8.1.1 Introduction . 41

8.1.2 Code inspection . 41

8.1.3 Running the example . 43

8.1.3.1 Compile and Startup . 44

9 A Simple Logging Service 46

9.1 SimpleLogger . 46

9.1.1 Introduction . 46

9.1.2 Code inspection . 47

9.1.3 Running the example . 48

9.1.3.1 Compile and Startup . 49

10 An AreaViewer Service 51

10.1 AreaViewer . 51

10.1.1 Introduction . 51

10.1.2 Code inspection . 52

10.1.3 Running the example . 55

term project, July 2005

TABLE OF CONTENTS vii

10.1.3.1 Compile and Startup . 55

V Discussion and Future Work 57

11 Discussion and Future Work 58

11.1 Overview . 58

11.2 Discussion . 59

11.3 Future Goal . 60

VI Glossary and Bibliography 62

12 Glossary 63

term project, July 2005

List of Figures

2.1 Domain Model . 5

2.2 Initiated property change . 6

2.3 Autonomous property change . 7

2.4 device registration . 7

3.1 Architectural overview . 10

3.2 API Specification overview . 11

3.3 Area representation . 12

3.4 Device representation . 13

3.5 Property representation . 14

3.6 ABISystem representation . 14

3.7 BusMultiplexer representation . 15

3.8 Bus representation . 15

3.9 PropertyType representation . 16

3.10 PropertyChangeListener representation . 17

3.11 DeviceRegistrationListener representation . 17

3.12 AreaRegistrationListener representation . 17

4.1 The RBC API deployment overview . 21

4.2 ConnectionEstablisher representation . 22

4.3 ABISystemImpl and the InternalABISystem class . 23

4.4 RBCDummyImpl overview . 25

4.5 Initiated property change . 27

viii

LIST OF FIGURES ix

6.1 The Knopflerfish OSGi Desktop . 32

6.2 Install the RBC API in the eclipse platform . 34

7.1 SimpleLightGUI application . 35

7.2 SimpleLightGUI: RBC Messages over telnet . 40

8.1 SimpleAreas: RBC Messages over telnet . 44

8.2 SimpleAreas Application . 45

8.3 SimpleAreas overview of all existing areas . 45

9.1 SimpleLogger UML . 47

9.2 SimpleLogger Application . 50

9.3 SimpleLogger Logfile . 50

9.4 SimpleLogger Logfile continued . 50

10.1 AreaViewer application . 52

10.2 AreaViewer UML diagram . 53

11.1 Future Architecture . 61

term project, July 2005

List of Tables

2.1 Update messages . 6

3.1 Data types and their constraints . 16

3.2 Exceptions . 19

11.1 Characteristics and their solutions . 59

12.1 Glossary . 63

x

Part I

Introduction

1

Chapter 1

Introduction

1.1 Overview

The purpose of this document is to describe the API to be used when developing custom ABI client appli-
cations.
The benefit of such an API is that any ABI client application does not depend on the complex ABI system
anymore. Instead any ABI client can now take over the control of the ABI System in a distributed fashion.
In order to accomplish such an API a protocol needed to be developed and standardised. ([NB05c]) The
API hereby supports most of the features that the protocol prescribes.

1.2 Terms and Definitions

For the sake of clarity we use the term RBC API to refer to the remote implementation of the API when
not explicitly stated otherwise. More details about each specific implementation see section: 4

1.3 Document structure

This document is structured into six parts: The Introduction (See part: I), Analysis (See part: II), Architec-
ture, Design and Implementation (See part: III), RBC API Tutorial (See part: IV), Discussion and Future
Works (See part: V) and the Glossary and Bibliography (See part: VI).
The second part (See part: III) gives a general introduction about the context we are dealing with. For this
purpose we introduce a short domain model (See figure: 2.1) that abstracts the domain of application.
In chapter 3 we then introduce the architecture and the design of the API. You will see how the API has
been structured and collaborate with its defined components.
One of the core elements of this article then builds the RBC-Tutorial (See part: IV) that first guides you
though a short introduction in how to start the ABI System (See chapter: 6), how to install and start the
necessary bundles that are part of the ABI System and most importantly how to setup the RBC API with
your environment (See section: 6.2) such as the Eclipse Platform ([ECL]). Right after that you will be
accompanied to implement your first distributed RBC client application (See chapter: 7). Chapter 8, 9 and
10 will then cover some more examples and will leave you with a Discussion and Future Work (See part: V)
that clearly recaps addressed and solved issues and also forecasts what needs to be done in the upcoming
diploma thesis (See section: 11.3).

2

Part II

Analysis

3

Chapter 2

Analysis

2.1 Introduction

The domain analysis in our context recalls the needed core elements that are needed to acquire all necessary
building information (knowledge) such as presence and daylight sensors, etc. which are applicable when
developing any intelligence that should be capable of controlling a building.
In order to get to know what kind of logic we are dealing with we cover following subjects in the analysis

before moving on to the architecture and the design.

• A Domain Model that illustrates the statical view

• Necessary dynamics (current environmental data)

• Coverage and dependencies of the protocol specification

• API abilities and responsibilities (Needs)

• API Goals

2.2 Domain Model

The core intention of the API is to provide a reproduction of the complex ABI System in a small kind
of form. For this purpose we developed a small domain model that reflects the environment in which any
further development activities may take advantage of.
The concepts used in the domain model won’t need any further explanation since the names of the concepts
speak for themselves. (See figure: 2.1)

4

2.3. DYNAMICS 5

Figure 2.1: Domain Model

2.3 Dynamics

One of the issues we got confronted with was that devices quite often provide different settings and possibil-
ities to either query them or not. This means that each device must provide and determine its capabilities
in form of properties ([NB05b]). For instance: A Falcon light devices lighttstatus can be set and does even
provide a message that is being sent right after each status change. On the other hand we can not presume
such a feature as a requirement for each single device.
This is one major restriction we need to conform and to consider. An other aspect we need to watch out for
is that upon any user interaction i.e. light status change must be recognizable by other clients as well. To
counteract this issue the server has been implemented using a broadcast mechanism that informs any clients
about that incident. In a nutshell we can summarize following criteria.

• hardware can be set (means i.e. A light can be switched on)

• hardware can provide status information such as announcing presence

• the API must be capable of receiving any changing state held by the server.

Basically we can distinguish between three cases that we need to think of when designing the API. These
are illustrated in figure: 2.2, 2.3 and 2.4.
We have incoming messages that we classify as update messages. (See table: 2.1). So we need to be capable
of receiving such messages from the server. In this case the API must be provided with all possible update
messages prescribed by the protocol specification ([NB05c]).

term project, July 2005

CHAPTER 2. ANALYSIS 6

Update message Description
busupdate Update messages which contain information about a spe-

cific bus such as busid and the state of the bus.
deviceupdate Update messages which contain information about newly

registered or deregistered devices.
propertiesupdate Update messages which contain properties of a device.
areaupdate Update messages which contain information about created

and deleted areas, registered devices, their detailed loca-
tion, etc.

Table 2.1: Update messages

Figure 2.2: Initiated property change

In this sequence diagram (See figure: 2.2) we can observe that any client can initiate a device property
change (Provided that this device can be changed). All participants must be notified that the properties
have been altered, and accordingly must be adapted by all client platforms in order to preserve consistency.

term project, July 2005

2.3. DYNAMICS 7

Figure 2.3: Autonomous property change

On the other hand when devices provide the capabilities to signal any change of state to the server this
messages must be forwarded to any available stations. Analogically all participants must be notified about
the signal in order to enable consistency on each client platform (See figure: 2.3).

Figure 2.4: device registration

Sometimes consistency must also be provided when altering the state of the server. i.e. When registering a
new device or when connecting a new bus, etc. to the ABI system (See figure: 2.4).

term project, July 2005

CHAPTER 2. ANALYSIS 8

2.4 Protocol specification

Clients can consume services which take almost no time to complete. On the other hand the services may
take considerable amount of time to complete. So it’s important that the API provides both blocking and
non-blocking API calls. With a blocking API client will hang till the operation completes. In other words
once invoked, the client will keep blocking till it gets the response (if any) from the service. This is a very
useful method when invoking ABI services (RSI’s) that do not take long time to complete and the hanging
in the client side is negligible. This will be a huge drawback in the client side performance, if the operation
takes considerable amount of time.

Thus a non blocking API will provide the client to use a callback mechanism (or polling mechanism) to
get the responses (if any) for a service invocation.

Most of the features presented in the RBC specification ([NB05c]) can basically be regarded as features
to be implemented and MUST therefore be provided by this API.

2.5 API abilities and responsibilities

The core principle of this API is to provide a platform for custom client applications and also bundles (See
section: 11.3). Hereby the goal that this API strives for is to detach any client relevant concepts (such as an
AI or Controlling application) from the underlying communication and reproduction part. Thus increasing
abstraction and decreasing low level concerns.

2.6 API Goals

• Independent of any server implementation

• Vice-versa. Server can be changed independently

• Applied Object Oriented Concepts (i.e. Observer notifies about a device change)

• The API must be designed to be portable and expendable to be installed as a separate bundle (See
section: 11.3)

• Enhancing development speed, testability and debugging, etc.

• A clear separation of concern (Server and Client)

• Must be capable to provide a stable platform for custom client applications. Concretely speaking the
API is destined for logging, intelligence and administrative application programs.

• Comprehensibility

• Easy to use (close to domain)

• Well documented (with accompanying examples)

term project, July 2005

Part III

Architecture, Design and
Implementation

9

Chapter 3

Architecture and Design

3.1 Overview

This section describes the environment and the core concepts of the RBC API and the role it plays in
applications. According to figure: 3.1, the architecture is composed into three main parts. Further the
bottom is constructed out of (two) sub-parts.

Figure 3.1: Architectural overview

• On top of the architecture we place custom client applications that make use of the actual API.
Evidentially one can observe that client applications do not depend on other parts but the RBC
specification.

• Underneath we introduce an API specification that is independent of any concrete realizations.

• Having once defined the RBC specification, a set of concrete RBC implementation can be imple-
mented.

10

3.2. RBC API SPECIFICATION 11

The concrete implementation is tightly coupled with a communication subsystem that invokes pre-
scribed protocol specific implementation constraints.

3.2 RBC API Specification

The RBC API Specification defines following abstract classes and interfaces (See figure: 3.2 and sections:
3.2.2 and 3.2.3).

Figure 3.2: API Specification overview

term project, July 2005

CHAPTER 3. ARCHITECTURE AND DESIGN 12

3.2.1 General

The abstract classes and interfaces may depend on external packages provided by the Java Runtime Environ-
ment (JRE), which are not listed here. For details on the Java packages, see the Java API documentation.
([JAVa])
Please note that more information can be acquired by the appropriate JavaDoc section ([JAVb]).

3.2.2 Abstract Classes

Quite often API specifications are commonly given as abstract classes and interfaces. Naturally they are
composed in a way that they restrict any misleading access and are therefore declared as internal as a
precaution.
This specification defines two abstract classes each of which needed to be defined as abstract since both
require to implement the Observable class (See sections: 3.2.2.1 and 3.2.2.2).

3.2.2.1 Area

An Area is basically a collection of devices. No other functionalities have been currently defined yet. It
should be the abstract representation of a logical structure. For instance it could be a room or something
like that.
Additionally each device within an area has an exact detailed location. i.e. window or corridor.
According to section 3.2.3.2 the abstract Area class is derived by the Observable class. This is neces-
sary since areas can be altered by all clients simultaneously. So it notifies any changing states to appropriate
observers.

Figure 3.3: Area representation

3.2.2.2 Device

In contrast to the Bus interface (See section: 3.2.3.4) which only defines devices, this abstract class is
responsible of providing methods register(), deregister() which intends to conveys the data to the
ABI System for accountancy. So when performing these methods the device must first be created across the
Bus Interface, createDevice() method.
Please note that if the registration process cannot be completed out of some any reasons, the device provides
an additional method which allows the device to be removed completely (registerRemoveIfFailed()).
This might be useful for certain type of application programs (i.e commonly applied when trying to access
a device which does either not exist or not respond)
Other methods such as: getAllProperties(), getAllReadableProperties(), getPropertyValue() are
quite useful for many applications when acquiring property data.
More information about the property concept can be obtained in our term-project documentation ([NB05b]).

term project, July 2005

3.2. RBC API SPECIFICATION 13

Figure 3.4: Device representation

3.2.3 Interfaces

The interfaces described here usually correspond to either Listeners, generic data type or other domain
related definitions.

3.2.3.1 Property

Every device (physical or virtual) has a set of properties. A property is actually just a tag value pair as
known by the Java API itself. Additionally though we supply other attributes to the property. Namely, we
consider a property as readable and writeable. This is necessary since we don’t know if additional devices
or buses are added in the near future. And in order to provide an independent representation format such
a concept was a necessary. Imagine a client software would need to know each specific supported command
in advance. This would be nuts since nobody would like to rewrite the client-software if additional devices
are plugged at runtime.
In order to receive changing property information a method addPropertyChangeListener() has been added
to this interface that can be registered through any class given by a client application.
For more information about the property concept please consult our term-project documentation ([NB05b]).

term project, July 2005

CHAPTER 3. ARCHITECTURE AND DESIGN 14

Figure 3.5: Property representation

3.2.3.2 ABISystem

This interface defines the entire ABI system for either a remote or a local access. Practically all calls must
be initiated across this interface.
Mainly it provides the capability to add/remove listeners which are used by client applications which want
to be notified about any added devices or areas. Vice versa this listeners will also be notified when areas
and devices have been removed from the system.
To acquire changing state information of existing devices or areas, consult sections 3.2.2.2 and Architecture
and Design.RBC API Specification.Abstract Classes.Area instead.

Figure 3.6: ABISystem representation

3.2.3.3 BusMultiplexer

Just like the ABI System this API provides a small interface that is responsible to multiplex buses.
This interface is commonly implemented by concrete API’s when applications need to find all available buses
within the ABI System. This happens through the call of getAllBuses()

term project, July 2005

3.2. RBC API SPECIFICATION 15

Figure 3.7: BusMultiplexer representation

3.2.3.4 Bus

A client side representation of a bus (i.e. The LonBus or the FalconBus, etc.).
The Bus interface provides a set of administrative methods that have been disposed to dealing with
buses. It’s important to note that this isn’t the only interface where new devices can be created by invoking:
createDevice() method.
The connect() method is responsible to hook a given bus to the system. Generally this method is called
through the abstract Device class when acquiring any specific device information where a connection to
the bus is necessary.
Therefore instead of calling connect() manually, a direct call across the abstract Device class might be
better choice.
Because of the fact that every device (including virtual devices) are necessary to be attached by exactly one
bus, it’s crucial to know that all devices need to be removed from the system upon calling the disconnect()
method.

Figure 3.8: Bus representation

3.2.3.5 PropertyType

This interface defines an interface that all ”custom” data types need to implement. Currently we provide
six different data types. The value of the field type should match one of the data types listed in the first
column of table 3.1.

The protocol specification suggests to implement an API that provides an interface that defines all ”custom”
data types (See table: 3.1) according to the RBC specification. All concrete data types would hereby need

term project, July 2005

CHAPTER 3. ARCHITECTURE AND DESIGN 16

Data type Constraint
EnumType list of enums: i.e.

enum:ON
enum:ON

IntegerType {min, max} pair. i.e.
min:0
max:128

FloatType {min, max} pair. i.e.
min:0
max:128

DoubleType {min, max} pair. i.e.
min:0
max:128

BooleanType NONE
StringType Given as a regular expression(regex) i.e. we can define a date

format:([0-9]+)/([0-9]+)/([0-9]4)

Table 3.1: Data types and their constraints

to implement to this interface. We suggest naming the data types according to the names specified in table
3.1. Further we suggest of providing a validation scheme in form of a method that checks corresponding
values (validate() method). Note that this is necessary since every data type has i.e. a Min or Max value
or if we go further let’s say an EnumType would need to check if the value string is equal to one of those
enumerated values. You can compare the entire property concept including the property type with a small
middleware customized for this kind of purpose. It defines a small set of an IDL in order that we know what
kind of properties each device provides. i.e. A light might be able to be switched off and on. So we provide
the custom tags: writeable, readable and a set of predefined types (IDL) to define a property. With that
simple locomotive a client application can easily visualize the properties without having to know about the
concrete server in the first place. i.e. A sample GUI application can be accomplished like that:

• A light switch can be visualized, since it’s writeable and can therefore be illustrated using a combobox
since it’s an EnumType or BooleanType.

• A presence sensor might be visualized using a label since its not writeable but readable.

Want more information? Consult the term-project documentation ([NB05b]).

Figure 3.9: PropertyType representation

term project, July 2005

3.2. RBC API SPECIFICATION 17

3.2.3.6 PropertyChangeListener

According to the Property interface (See section: 3.2.3.1) any device can register multiple property
listeners in order to receive any property changes. i.e. A lightstatus property may provide two different
propertyvalues (ON or OFF) that is being sent by the server (considering the Remote implementation of the
RBC API). Basically its a callback interface that is used by any class that wants to be notified about any
changes of a property for which it has been registered for. So any client that wants to be notified about the
property-change must implement the PropertyChangeListener interface, propertyChanged() method.

Figure 3.10: PropertyChangeListener representation

3.2.3.7 DeviceRegistrationListener

According to the ABISystem interface (See section: 3.2.3.2) any device can be registered or deregistered
to/from the ABI System. In order to receive such kind of changes. i.e. When a device has been regis-
tered through the (abstract Device class, registerDevice()) by a client. Other clients which want to
be notified about the registration process must implement the DeviceRegistrationListener interface,
onUpdate() method.

Figure 3.11: DeviceRegistrationListener representation

3.2.3.8 AreaRegistrationListener

According to the ABISystem interface (See section: 3.2.3.2) any area can be created or removed to/from
the ABI System. In order to receive such kind of changes. i.e. When an area has been created through
the (ABISystem interface, createArea()) by a client. Other clients which want to be notified about the
registration process must implement the AreaRegistrationListener interface, onUpdate() method.

Figure 3.12: AreaRegistrationListener representation

term project, July 2005

CHAPTER 3. ARCHITECTURE AND DESIGN 18

3.2.4 Exceptions

Exceptions (See table: 3.2) usually provide good detailed information about their reason or cause. So when
developing GUI applications it is advisable to use something like that:

1 try
2 {
3 // Do some call that might throw an exception
4 bus.connect();
5 }
6 catch (Exception e)
7 {
8 // Display an error message on the screen
9 JOptionPane.showMessageDialog(null,
10 e.getMessage(),
11 "Error",
12 JOptionPane.ERROR_MESSAGE);
13 }

Its been tried not to use cryptic error messages on the server. So any GUI application may take advantage
of this additional option.

term project, July 2005

3.2. RBC API SPECIFICATION 19

Exception types Description
AreaCreateException The desired area couldn’t be created. This exception usu-

ally appears and is being thrown when trying to create an
area that does already exist.

AreaRemoveException The desired area couldn’t be removed. This exception usu-
ally appears and is being thrown when trying to remove an
area that has not existed before.

ConnectException This exception can be thrown in two different variations.
One form of the ConnectException is when the client fails
to connect to the server, or the other is when the server
fails to connect a desired bus. (i.e. falcon bus)

DeviceDeregistrationException The DeregisterException usually appears when the client
tries to deregister a device which doesn’t even exist in the
ABI System.

DeviceRegistrationException The DeviceRegistrationException usually appears when
the client tries to register a device which has already been
registered or when the busid is unknow or the bus does not
support such a deviceurl.

DeviceAlreadyInRoomException The DeviceAlreadyInRoomException appears when a
client tries to add a device to an area that has already
accounted this device in the first place.

DeviceNotFoundException The DeviceNotFoundException appears when a device
cannot be detected from the requested area.

DeviceReadException The DeviceReadException appears upon failing to read
the properties of a device.

DisconnectException The DisconnectException appears upon failing to discon-
nect from a given bus.

InvalidValueException The InvalidValueException appears when the property
value of the corresponding property type definition has been
violated.

LocationChangeException The LocationChangeException appears when the the de-
vice or the area does simply not exist.

PropertyNotExistException The PropertyNotExistException appears when trying to
acquire a property by a given name which does not exist in
this device.

PropertyNotReadableException The PropertyNotReadableException appears when trying
read a property which is not readable.

PropertyNotWriteableException The PropertyNotWriteableException appears when try-
ing write to a property which is not writeable i.e. A pres-
ence sensor usually provides only readable properties.

Table 3.2: Exceptions

term project, July 2005

Chapter 4

Implementation

4.1 Introduction

Since we only want to point out the essentials we keep this chapter short because most of the things have
already been covered by the previous chapters. As already stated in the abstract we implemented two dif-
ferent variations of the RBC API specification.
These are: RBCRemoteImpl.jar and the RBCDummyImpl.jar. The RBCRemoteImpl.jar refers to the remote
implementation of the API that must be included when doing any real interactions with the RBC Server.
The RBCDummyImpl.jar has been implemented with the goal of performing any development activities com-
pletely independent of the RBC Server and therefore doesn’t need any network connection to be established
in the first place. The intention is obviously: During the development phase you might consider to include
the RBCDummyImpl.jar instead and swap the underlying implementation as soon as the client application
has been completed and tested. Thus facilitating the development practices because the RBCDummyImpl.jar
as the name implies provides a dummy implementation of the ABI System. Concretely speaking it provides
a dummy bus, creates some dummy areas and devices and everything (as mentioned) in form of a simulation
since nothing really does happen.

The following deployment diagram should mirror a full overview of the current situation (See figure: 4.1):

20

4.1. INTRODUCTION 21

Figure 4.1: The RBC API deployment overview

term project, July 2005

CHAPTER 4. IMPLEMENTATION 22

4.2 Remote RBC API implementation (RBCRemoteImpl)

4.2.1 Overview

The RBCRemoteImpl implements the remote variation of the RBC specification. Since this implementation
needs to communicate to the RBC Server ([NB05b]) a communication subsystem has been used (See section:
4.2.2).

4.2.2 Communication Subsystem

The communication subsystem has been written to be reusable. In order to improve the re-usability, it has
been split into multiple components that can be exchanged, if needed.
The communication subsystem is responsible for transferring control and information messages between the
client and the server. The communication is done via messages that are exchanged between the client and
the server.
For more information about the applied protocol and details on the messages and their format please consult
the RBC protocol specification ([NB05c]).

The communication subsystem has been more or less adapted from the subsystem implemented in the ABI
RBC Server. So for more details about this architecture consult our term-project documentation ([NB05b]).
Nevertheless when looking closely one will notice that both subsystems have been implemented in two dif-
ferent variations. The concrete remote RBC API implementation uses an active open connection in order to
establish a connection to the server which in contrast is rather in passive mode (See figure: 4.2).

Figure 4.2: ConnectionEstablisher representation

Further distinguishable marks are that the server dispatcher (MessageDispatcher) which is launched as
a separate (Thread (Runnable)) will enqueue any handler tasks to a separate Thread in the ThreadPool
class, in order to shorten the processing time needed by each handler. Thus assisting the dispatch thread
in the form that the dispatch thread can return to the BlockingQueue, dequeue() method and hereby
enhance the speed of dispatching work drastically. One of the competing threads in the ThreadPool can
then process the incoming message by its corresponding handler.
The concrete remote RBC API implementation does not uses this principle since no concurrent usage of the
dispatcher is usually necessary.

4.2.3 Code inspection

It wouldn’t make sense to cover all the details and classes again since the RBC API Specification already
covered the features that must be implemented by each concrete API. But some insights about the Remote

term project, July 2005

4.2. REMOTE RBC API IMPLEMENTATION (RBCREMOTEIMPL) 23

Implementation are now given which might give some hints how it has been realized.

4.2.3.1 ABISystemImpl and InternalABISystem

The ABISystemImpl class (See figure: 4.3) represents the whole ABI-System for remote access. Its signature
corresponds to the ABISystem interface (See section: 3.2.3.2).
All classes will be created from this class since it serves as the main entry point to any concrete client
applications that make use of the remote RBC API. This happens to be the only public class with a public
constructor anyway.

Figure 4.3: ABISystemImpl and the InternalABISystem class

The InternalABISystem class (See figure: 4.3) is basically a helper class that has been aggregated by
the ABISystemImpl class. Its main task is to figure out the side of the event. Specifically speaking an
application might have different access rights then the handlers (See section: 4.2.2). This is because on one
side the application is allowed to access the API (quite often with restriction) and on the other side the
handlers also (quite often with more rights). So some class needed to be sandwiched that solves the problem
of indirection in a way that it doesn’t affect the visibility of either party (handler and the application side).
This might sound very complicated but needed to be done for differ between the two cases.

term project, July 2005

CHAPTER 4. IMPLEMENTATION 24

Further task are to register all necessary communication handlers that correspondingly process incoming
messages initiated by the RBC Server ([NB05b]) (Line 4-11).

1 public InternalABISystem(String host, int port) throws ConnectException
2 {
3 dispatcher = new MessageDispatcher();
4 dispatcher.registerHandler(ABIPConstants.MSG_PROPERTIESUPDATE,
5 new PropertiesUpdateHandler(this));
6 dispatcher.registerHandler(ABIPConstants.MSG_BUSUPDATE,
7 new BusUpdateHandler(this));
8 dispatcher.registerHandler(ABIPConstants.MSG_DEVICEUPDATE,
9 new DeviceUpdateHandler(this));
10 dispatcher.registerHandler(ABIPConstants.MSG_AREAUPDATE,
11 new AreaUpdateHandler(this));
12 conex = new ConnectionEstablisher(dispatcher);
13
14 try
15 {
16 conex.connect(host, port);
17 }catch (Exception e)
18 {
19 throw new ConnectException(e);
20 }
22 //...
22 }

4.3 Dummy RBC API implementation (RBCDummyImpl)

In order to allow a server-independent application development a dummy implementation of the RBC API
has been made. Broadly speaking it uses the same components that you should already be familiar with in
a simplified way.
More or less it provides the same functionality as the RBCRemoteImpl with the distinguishable difference of
that it doesn’t communicate with the RBCServer. It accomplishes this by providing a set of dummy devices,
areas and buses. (See section: 4.3.2) for a more detailed illustration.

4.3.1 Overview

When having a look at the class diagram one will notice how the different components collaborate with each
other. Please note that a bunch of other dependencies such as the listeners have been skipped (See figure:
4.4).

term project, July 2005

4.3. DUMMY RBC API IMPLEMENTATION (RBCDUMMYIMPL) 25

Figure 4.4: RBCDummyImpl overview

4.3.2 Code inspection

When having a close lock at each implementation one will notice that each class instantiates a set of default
so called dummy objects.

For instance the AreaImpl class creates a set of default dummy devices.

1 devices.add(new DeviceLocationPair("location1",
2 new DeviceImpl(new URI("http://1.1.1.1:1/dummy/noservice"))));

term project, July 2005

CHAPTER 4. IMPLEMENTATION 26

3 devices.add(new DeviceLocationPair("location2",
4 new DeviceImpl(new URI("http://1.1.1.1:2/dummy/noservice"))));
5 devices.add(new DeviceLocationPair("location3",
6 new DeviceImpl(new URI("http://1.1.1.1:3/dummy/noservice"))));

The BusImpl class creates a local bus facade for dummy Buses. Hereby 2.2.2.2 refers to dummy buses
instead of real buses provided by the ABI System. As you can see the Bus is also allowed to create new
devices.

1 devID = "http://2.2.2.2:1/"+busID+"/noservice";
2 devices.put(devID, new DeviceImpl(new URI(devID)));
3 devID = "http://2.2.2.2:2/"+busID+"/noservice";
4 devices.put(devID, new DeviceImpl(new URI(devID)));
5 devID = "http://2.2.2.2:3/"+busID+"/noservice";
6 devices.put(devID, new DeviceImpl(new URI(devID)));

The DeviceImpl class creates a set of properties each of which represents a different type to enable real
test cases.

1 properties = new Property[6];
2 properties[0] = new PropertyImpl(
3 "boolean","true",true,true,new BooleanType());
4 properties[1] = new PropertyImpl(
5 "enum","A",true,true,new EnumType(new String[]{"A","B","C","D","E"}));
6 properties[2] = new PropertyImpl(
7 "float","1.2",true,true,new FloatType(0,5));
8 properties[3] = new PropertyImpl(
9 "double","1.3",true,true,new DoubleType(0,5));
10 properties[4] = new PropertyImpl(
11 "int","4",true,true,new IntegerType(0,5));
12 properties[5] = new PropertyImpl(
13 "string","asssd",true,true,new StringType(".*d"));

4.4 General aspects and principles

4.4.1 Lazy Acquisition Principle

The Lazy Acquisition principle applied in this context defers resource acquisitions to the latest possible time
during system execution in order to optimize resource use.
Specifically speaking instead of requesting all devices and their properties we split the task into two parts.
Namely we distinguish between a device and its properties in the sense that we don’t load the accompanying
properties upon calling Bus, getAllDevices() which actually returns an array of devicesurls, each of which
basically represents a device proxy ([GHJV94]) object (See section: 4.4.2)
This procedure was necessary since we prefer not to block the communication subsystem with long lasting

communication tasks which would frankly speaking happen quite often when eagerly acquiring devices and
their properties as a tuple.
So when acquiring all possible devices of any available buses i.e. the Falcon bus, a device proxy object is
created for each registered device found in the ABI System. In order to acquire all defined or needed device
properties from the desired device, the time consuming method: getAllProperties() needs to be called
from the Device (proxy object).
Assuming you have a GUI application that shows all available devices that are currently member of a room
(area). When trying to access one of the devices which hasn’t been loaded before, the system will acquire
all device properties currently known to that device automatically (See section: 4.4.2).
However when using the API you shouldn’t bother with this concept since its hidden for any application
which make use of this API.

term project, July 2005

4.4. GENERAL ASPECTS AND PRINCIPLES 27

When multiple client are interconnected with the server it might happen that a client receives updates about
currently unknown devices, areas or even buses. Such update messages are handled by the current concrete
remote RBC API implementation as it creates proxy objects for each new device or area upon identification.

4.4.2 Remote Proxy Principle

The last section briefly introduced the use of proxies. To be more accurate a proxy in our context can be
identified as a remote proxy that provides a local representative for an object that resides in a different
address space (ABI System, RBC Server).
Generally it provides a stub object similar to the ”stub” code in RPC and CORBA. Basically it converts
most of the regular object method calls to RBC (Remote Building Control) messages.
The following sequence diagram (See figure: 4.5) shows how a remote proxy is being used when dealing with
devices. ([NB05c]).

Figure 4.5: Initiated property change

term project, July 2005

Part IV

RBC API Tutorial

28

Chapter 5

Introduction

5.1 Introduction

This tutorial introduces you to the Remote Building Control (RBC) programming API. First, the reader
will be guided on how to start the Knopflerfish OSGi Framework, and as a following we briefly recap the
installation and startup of the ABI System bundles and libraries.
The reason why this might be worth to be rolled up again is that almost each RBC API interaction is
basically knocked down to RBC Messages which in turn require a network connection to be established to
the RBC Server. So it is fundamental for this tutorial to know how to start the RBC Server that coactive
needs to be installed as a separate OSGi bundle within the Framework since it provides some kind of door
to the ABI System.
Reasonably we quickly introduce how to setup the RBC API and will then start with the actual tutorial
that has been structured into working examples rather then much of theory.
Please note that this tutorial does not intend to cover all the details about this API but should give you
enough hints and examples on how to accomplish your own application based on this API.
Furthermore we would like to point out that this tutorial does neither cover any OSGi specifics nor any ABI
System details. So for details about any OSGi issues have a look at the Knopflerfish website ([KNO]) or the
OSGi Alliance ([OSG]). Also consider our term-project documentation ([NB05b]) that rather covers OSGi
related topics.

5.2 Accompanying Executables and Code

All code examples provided by this tutorial and also the accompanying RBC API reference documentation
given as JavaDoc can be obtained at: http://www.ini.unizh.ch/∼snufer
Each of the examples (starting from chapter: 7) usually do not contain the entire sources in their full length.
Instead this document is meant to provide additional information and help about the examples.
This tutorial is organized as follows:

• First we give some installation instructions on how to start the OSGi Framework.

• As a second we give a short overview on how to install and start the necessary bundles of the ABI
System.

• Then we briefly introduce on how to setup the API with an IDE such as the Eclipse Platform ([ECL]).

• The actual tutorial starts by providing a set of the examples each of which is structured like:

– Introduction: A short introduction about the example. What it does, what’s its intention, etc.

– Code inspection: We explain some source code snippets used by that example

29

http://www.ini.unizh.ch/~snufer

CHAPTER 5. INTRODUCTION 30

– Running the example: Explains how to start the application and might give some other
additional hints.

term project, July 2005

Chapter 6

Installation

6.1 OSGi Framework installation and startup

6.1.1 Starting the OSGi Framework

We assume that you’ve already installed the Knopflerfish [KNO] OSGi Framework. Otherwise please consult
knopflerfish.org ([KNO]) where you can download the framework accordingly.
Having once installed the framework we recommend to start the graphical user interface provided by knopfler-
fish. There are three mandatory software packages which are required in order to launch the framework (See
figure: 6.1).

• The Java Runtime Environment(JRE) ([JAVa])

• Knopflerfish binary, or source distribution

• and the accompanying ABI System related packages must be available in jars folder of the Knopflerfish
installation.

This command initiates the start of the framework with an accompanying graphical user interface.
Open the shell and cd to the OSGi directory of the Knopflerfish installation and type:

java -Xmx128m -jar framework.jar -init

Now you have two possibilities on how to integrate the bundles into the framework. You can either install
the bundles using the graphical user interface (See section: 6.1.2) or use a telnet console to connect to the
framework (See section: 6.1.3).

6.1.2 Installing the bundles with the GUI

Installing the ABI System with the graphical user interface is done by choosing the ABI System bundles
with the help of the file dialog. The bundles are then installed and started. The recommended order of
installing the bundles is as follows:

1. wireadmin/wireadmin api-1.0.0.jar

2. wireadmin/wireadmin-1.0.1.jar

3. comm-win32/comm-win32 all-1.0.0.jar

31

CHAPTER 6. INSTALLATION 32

Figure 6.1: The Knopflerfish OSGi Desktop

4. ABInetmonitor/ABInetmonitor all-1.0.0.jar (currently in use but will be evicted at a later point of
time)

5. ABIutil/ABIutil-1.0.0.jar (currently in use but will be evicted at a later point of time)

6. ABIcoreapi/ABIcoreapi all-1.0.0.jar

7. ABIFalcon/ABIFalcon-1.0.0.jar

8. ABIArea/ABIArea all-1.0.0.jar

9. ABIrbcserver/ABIrbcserver all-1.0.0.jar

6.1.3 Installing the bundles with telnet

You can either telnet to the OSGi framework or you can manually include the bundles by simply typing:

term project, July 2005

6.2. RBC API INSTALLATION 33

telnet localhost
Knopflerfish OSGi console
login:your login-name
password:your password

Now that you are connected to the framework’s telnet server you are authorized to install the bundles with
the following commands (assuming that you’ve copied all ABI bundles to the frameworks’s jar directory):

install file:jars/wireadmin/wireadmin_api-1.0.0.jar
file:jars/wireadmin/wireadmin-1.0.1.jar
file:jars/comm-win32/comm-win32_all-1.0.0.jar
file:jars/ABInetmonitor/ABInetmonitor_all-1.0.0.jar
file:jars/ABIutil/ABIutil-1.0.0.jar
file:jars/ABIcoreapi/ABIcoreapi_all-1.0.0.jar
file:jars/ABIFalcon/ABIFalcon-1.0.0.jar
file:jars/ABIArea/ABIArea_all-1.0.0.jar
file:jars/ABIrbcserver/ABIrbcserver_all-1.0.0.jar

start "Wire Admin"
"ABI Net Bundle"
"ABI Core Bundle"
"ABI Falcon Bundle"
"ABI Area Bundle"
"ABI RBC Server"

6.2 RBC API installation

The API is structured into three different jar files (See figure: 4.1). For more information about each specific
implementation consult chapter 4.

Each example provided below actually explains how to compile and start each of the application. How-
ever for the sake of simplicity we recommend to use an IDE such as the Eclipse Platform ([ECL]) in order
to simplify any development with the API.
So when creating a new project with Eclipse make sure that you import the RBC-API.jar and either the
RBCDummyImpl.jar or the the RBCRemoteImpl.jar in your Java build path (See figure: 6.2) Otherwise, you
will not be able to access the implementation classes and the needed specification provided by all jar files.

term project, July 2005

CHAPTER 6. INSTALLATION 34

Figure 6.2: Install the RBC API in the eclipse platform

term project, July 2005

Chapter 7

Creating your first RBC Application

7.1 The SimpleLightGUI Application

7.1.1 Introduction

The goal of this chapter is to explain some basic interactions with the underlying API. For this purpose we
developed a simple GUI application that is capable of controlling a Ffalcon light in the sense that it provides
a ”light switch” that turns on and off the appropriate light. Please make sure that the Falcon bus and the
appropriate Falcon light have been connected to the ABI System that should have already been launched
before.
When starting the application you should see the following window (See figure: 7.1):

Figure 7.1: SimpleLightGUI application

35

CHAPTER 7. CREATING YOUR FIRST RBC APPLICATION 36

7.1.2 Code inspection

Again, the entire example can be downloaded from http://www.ini.unizh.ch/∼snufer

Here is the code that creates ABISystem object (See section: 3.2.3.2) and instantiates the GUI component
class LightGUI.

1 ABISystem abisystem = null;
2 try
3 {
4 abisystem = new ABISystemImpl("localhost", 1234);
5 new LightGUI(abisystem);
6 }
7 catch (ConnectException e)
8 {
9 e.printStackTrace();
10 }

In this example we differed between GUI (initGUI()) and ABI (initABI()) initialization as far as it was
possible. Having a glance back to the documentation of the ABISystem class (See section: 3.2.3.2) one will
notice that this class is responsible for retrieving necessary bus information across the BusMultiplexer (See
section: 3.2.3.3) as we can see in line 9.
We then create the device, using the recently created bus object (Line 12).
In line 14-22 we retrieve the desired property name lightstatus that has been defined by the concrete device.

1 private static final String BUS = "falcon.bus-1.0";
2 private static final String SERVICENAME = "LightService?fqcn=...";
3 // ...
4
5 private void initABI() throws ConnectException, URISyntaxException,
6 DeviceRegistrationException
7 {
8 // Create the bus
9 this.bus = this.abisystem.getMultiplexer().getBusByName(BUS);
10 // Connect the bus to the ABI System
11 this.bus.connect();
12 this.device = this.bus.createDevice(new URI("http://0.0.0.0:35/" + BUS
13 + "/" + SERVICENAME));
14 this.properties = this.device.getAllProperties();
15 for (int i = 0; i < properties.length; i++)
16 {
17 if (properties[i].getName().equals("lightstatus"))
18 {
19 lightstatusProperty = properties[i];
20 break;
21 }
22 }
23 }

The following code shows how the necessary GUI components have been initialized. Additional attention
should be paid to line 6, 22 and 28.

• Line 6 extracts all available property values of the lightstatus property in order to initialize the
combobox items. Of course this is only possible when having the prior knowledge of the property type.
In this case we have: EnumType (See table 3.1).

term project, July 2005

http://www.ini.unizh.ch/~snufer

7.1. THE SIMPLELIGHTGUI APPLICATION 37

• Line 22 and 28 reading out the property values which are being changed upon repaint which is among
other things initiated by observer updates (See further below).

1 private void initGUI() throws IOException, PropertyNotReadableException
2 {
3 this.setSize(200, 300);
4 this.getContentPane().setLayout(new BorderLayout());
5 // Retrieve the property-values of the lightstatus property
6 String comboValues[] = ((EnumType) this.lightstatusProperty.getType())
7 .getEnumValues();
8 this.combobox = new JComboBox(comboValues);
9 // Set combobox
10 this.combobox.setSelectedItem(this.lightstatusProperty.getValue());
11
12 this.getContentPane().add(combobox, BorderLayout.NORTH);
13 this.combobox.addActionListener(new ComboBoxListener());
14 this.panel = new JPanel()
15 {
16
17 public void paint(Graphics g)
18 {
19 super.paint(g);
20 try
21 {
22 if (lightstatusProperty.getValue().equals("ON"))
23 {
24 g.drawImage(lightImageON, (getWidth() - lightImageON
25 .getWidth()) / 2, (getHeight() - lightImageON
26 .getHeight()) / 2, null);
27 }
28 else if (lightstatusProperty.getValue().equals("OFF"))
29 {
30 g.drawImage(lightImageOFF, (getWidth() - lightImageOFF
31 .getWidth()) / 2, (getHeight() - lightImageOFF
32 .getHeight()) / 2, null);
33 }
34 }
35 catch (PropertyNotReadableException e)
36 {
37 e.printStackTrace();
38 }
39 }
40 };
41
42 this.getContentPane().add(panel, BorderLayout.CENTER);
43 initImages();
44
45 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
46 this.setVisible(true);
47 }

Most of the initialization work is hereby completed.
In order to be notified about any device property changes following steps are further necessary:

1. This class must implement an Observer in order to receive any updates from the server.

1 public class LightGUI extends JFrame implements Observer

term project, July 2005

CHAPTER 7. CREATING YOUR FIRST RBC APPLICATION 38

2 {
3 //...
4 }

2. Implement the update() method that is required when implementing the Observer interface.
The SwingUtilities.invokeLater(new Runnable() enhances any drawings that must be performed
upon each update. Specifically speaking it causes the run() method to be executed asynchronously
on the AWT event dispatching thread.

1 public void update(Observable o, Object arg)
2 {
3 SwingUtilities.invokeLater(new Runnable()
4 {
5 public void run()
6 {
7 try
8 {
9 // Set combobox
10 combobox.setSelectedItem(lightstatusProperty.getValue());
11 // Repaint light-bulb
12 repaint();
13 }
14 catch (PropertyNotReadableException e)
15 {
16 e.printStackTrace();
17 }
18 }
19 });
20 }

3. Register ourselves as Observer (Line 9). This can easily be accomplished in the constructor among
other initializations state above.

1 public LightGUI(ABISystem _abisystem)
2 {
3 super("LightGUI");
4 this.abisystem = _abisystem;
5 try
6 {
7 initABI();
8 initGUI();
9 this.device.addObserver(this);
10 }
11 catch (Exception e)
12 {
13 e.printStackTrace();
14 }
15 }

Of course one might have missed the code that is reacting when the combobox is being altered. The following
code does this:

1 private class ComboBoxListener implements ActionListener
2 {
3 public void actionPerformed(ActionEvent arg0)
4 {
5 String val = (String) combobox.getSelectedItem();

term project, July 2005

7.1. THE SIMPLELIGHTGUI APPLICATION 39

6 try
7 {
8 lightstatusProperty.setValue(val, "JCraft Team");
9 }
10 catch (InvalidValueException e)
11 {
12 e.printStackTrace();
13 }
14 catch (PropertyNotWriteableException e)
15 {
16 e.printStackTrace();
17 }
18 }
19 }

As one can observe it is quite easy to change the property value of that device (See line 8).
Nobody will actually notice that a small middleware is involved in all of this.

7.1.3 Running the example

Before running this example, open a shell and telnet to the ABI System as follows:

telnet localhost 1234

In this case we use localhost as our host assuming that the entire ABI System is launched from the same
machine as the application. So this could be any valid address where an ABI System might be running.

Having once connected to the server you can start the application and you will be able to switch on and off
the lights by simply switching the combobox items.
Now have a brief look to the telnet client.

When switching the combobox you should be receiving RBC Messages such as those illustrated in fig-
ure 7.2. Of course this isn’t necessary but it demonstrates how the messages are being sent to the ABI RBC
Server.

term project, July 2005

CHAPTER 7. CREATING YOUR FIRST RBC APPLICATION 40

Figure 7.2: SimpleLightGUI: RBC Messages over telnet

term project, July 2005

Chapter 8

How to use Areas in a RBC
Application?

8.1 The SimpleAreas Application

8.1.1 Introduction

The goal of this chapter is to get an insight on how areas are handled by the API. For this purpose we
developed a simple console application that performs some area calls. i.e. It allows to create and delete
areas and lists all available devices from any desired area. Please make sure that the ABI system is available.

When starting the application you should see a window corresponding to figure 8.2.
Note that any operations such as create or delete areas affect the ABI system in the way that it actually
creates those areas in the framework itself. This means when the ABI area bundle ([NB05b]) suddenly stops
i.e. upon the stop command or when the entire framework has been shutdown, the ABI system will store
the current area context into a XML file in order to be able to boot strap and reinitialize the areas back to
their previous state since they actually do not depend on any buses and neither devices.

8.1.2 Code inspection

In order to be able to connect to the ABI System Server (RBC Server) the ABI System (See section: 3.2.3.2)
needs to be instantiated (Line 5, 21-25).

1 public void run()
2 {
3 try
4 {
5 init();
6 mainLoop();
7 }
8 catch(ConnectException e)
9 {
10 e.printStackTrace();
11 }catch (IOException e)
12 {
13 e.printStackTrace();
14 }
15 finally

41

CHAPTER 8. HOW TO USE AREAS IN A RBC APPLICATION? 42

16 {
17 abiSystem.disconnect();
18 }
19 }
20
21 private void init() throws ConnectException
22 {
23 abiSystem = new ABISystem(SERVER_NAME, SERVER_PORT);
24 inputReader = new BufferedReader(new InputStreamReader(System.in));
25 }

After the initialization has been completed the menu loop is being launched and the menu options presented.
Upon the matching console inputs (H,L,A,R,D,E) following area actions are possible (Line 8-27).

1 private void mainLoop() throws IOException
2 {
3 //...
4
5 // Read input character
6 switch(command.charAt(0))
7 {
8 case ’H’:
9 help();
10 break;
11 case ’L’:
12 listAllAreas();
13 break;
14 case ’A’:
15 addArea();
16 break;
17 case ’R’:
18 removeArea();
19 break;
20 case ’D’:
21 devicesInArea();
22 break;
23 case ’E’:
24 exit();
25 break;
26 default:
27 help();
28
29 }
30 //...

API specific constraints are now briefly explained.

Option L, listAllAreas() This is the central code that retrieves all available areas (listAllAreas())
(Line 1-8).

1 Area[] allAreas = abiSystem.getAllAreas();
2 //...
3
4 for (int i = 0; i < allAreas.length; i++)
5 {
6 String areaID = allAreas[i].getAreaID();

term project, July 2005

8.1. THE SIMPLEAREAS APPLICATION 43

7 String areaLocation = allAreas[i].getLocation();
8 //...
9 }

Option A, addArea() When creating a new area simply call createArea() on the ABISystem class.

1 //Create the area
2 try
3 {
4 abiSystem.createArea(areaID,areaLocation);
5 System.out.println("Area successful created");
6 }catch (AreaCreateException e)
7 {
8 printError("Area creation failed",e.getMessage());
9 }

Option R, removeArea() In order to remove an area, we must first find it (Line 4-10). When deleting
an area simply call removeArea() (Line 13) on the ABISystem class.

1 //Get the right Area
2 Area areaToRemove = null;
3 Area[] allAreas = abiSystem.getAllAreas();
4 for (int i = 0; i < allAreas.length; i++)
5 {
6 if(allAreas[i].getAreaID().equals(areaID))
7 {
8 areaToRemove= allAreas[i];
9
10 }
11 }
12 //..
13 abiSystem.removeArea(areaToRemove);

Option D, devicesInArea() Analogical to removeArea() the desired area must first be discovered. Then
we invoke areaToShow.getAllDevices() (Line 2) that retrieves all devices currently located in that
area. In order to obtain each specific device location you can make use of getDetailedLocationForDevice()
(Line 6).

1 // areaToShow refers to the desired area
2 Device[] dev = areaToShow.getAllDevices();
3 //...
4 for (int i = 0; i < dev.length; i++)
5 {
6 String detLocation = areaToShow.getDetailedLocationForDevice(dev[i]);
7 String devID = dev[i].getDeviceURI().toString();
8 //...
9 }

Noticeably, area operations are quite simple and easy to use.

8.1.3 Running the example

Before running this example, you also might want to observe the messages that are being sent between the
participants. So you can do this as explained in the previous chapter (See section: 7.1.3).
Note that you only receive update messages so don’t expect any others. When you like to observe the entire
traffic we suggest packet sniffers such as Ethereal ([ETH]) or Packetyzer ([PAC]).

term project, July 2005

CHAPTER 8. HOW TO USE AREAS IN A RBC APPLICATION? 44

Having once connected to the server you can start the application and you will be able to create and delete
areas, etc. with that program. Again have a brief look to the telnet client (See figure: 8.1).

When creating or removing any areas you should be receiving RBC Messages such as those illustrated
in figure 8.1.
Of course this isn’t necessary but it demonstrates how the messages are being sent to the ABI RBC Server.

Figure 8.1: SimpleAreas: RBC Messages over telnet

8.1.3.1 Compile and Startup

cd into the src directory of the SimpleArea application.

• Windows
-How to compile the application:

javac -classpath ../../libs/RBC-API.jar;../../libs/RBCRemoteImpl.jar;. *.java

-How to run the application.

java -cp ../../libs/RBC-API.jar;../../libs/RBCRemoteImpl.jar;. SimpleAreas

• Linux
-How to compile the application:

javac -classpath ../../libs/RBC-API.jar:../../libs/RBCRemoteImpl.jar:. *.java

-How to run the application:

java -cp ../../libs/RBC-API.jar:../../libs/RBCRemoteImpl.jar:. SimpleAreas

• Eclipse Platform
Include the RBC-API.jar as explained in the beginning of the tutorial (See section: 6.2).

When the compilation and the startup were successful you should see following window (See figure: 8.2).

When pressing L you should see all available areas currently known by the ABI System (See figure: 8.3).

term project, July 2005

8.1. THE SIMPLEAREAS APPLICATION 45

Figure 8.2: SimpleAreas Application

Figure 8.3: SimpleAreas overview of all existing areas

term project, July 2005

Chapter 9

A Simple Logging Service

9.1 SimpleLogger

9.1.1 Introduction

This chapter introduces some features which may be quite useful for other applications to provide. Imagine
two client applications that register or deregister devices from the ABI System. For this purpose this API
supports listeners that can be registered by any class which wants to receive such information. This example
incorporates the listeners in the form of a logging service that records such environmental changes. Other
changes which do not effect the environment in form of an enrichment or the opposite are to be implemented
as Observer. In order to be notified about environmental changes such as Falcon light status or presence
status changes this might be meaningful. Since a logging service needs to know about such changes as well,
we provide two classes called MyAreasObserver and MyDevicesObserver that record such alterations.

In order to keep the source code within one file the listeners and the observer classes have been imple-
mented as private classes (See figure: 9.1).

46

9.1. SIMPLELOGGER 47

Figure 9.1: SimpleLogger UML

9.1.2 Code inspection

As every example the ABISystem needs to be initialized (See section: 8.1.2). Additionally though following
initializations are necessary (Line 3 and 4). In order to be notified about any ’Adds’ or ’Removes’ the
listeners need to be implemented and registered to the ABISystem.
When areas are changed i.e. when the location of a device has been altered by an other client application,
we need to know about this incident. We achieve this to register an Observer for each area. In this example
we map one observer to several areas of course (Line 8-11).
Further since we want to be responsive about any device alterations we need to implement and register
an Observer as well (Line 13-20). What is the purpose of tracking devices when not being able to track
changing device properties? Line 19 counteracts this issue by registering a DevicePropertyListener for
each device currently accounted within the ABI System.

1 public void init() throws ConnectException, DeviceRegistrationException
2 {
3 system.addAreaRegistrationListener(new MyAreaRegistrationListener());
4 system.addDeviceRegistrationListener(new MyDeviceRegistrationListener());

term project, July 2005

CHAPTER 9. A SIMPLE LOGGING SERVICE 48

5
6 Area[] areas = system.getAllAreas();
7
8 for (int i = 0; i < areas.length; i++)
9 {
10 areas[i].addObserver(areasObserver);
11 }
12
13 BusMultiplexer multi = system.getMultiplexer();
14 Device[] dev = multi.getAllDevices();
15
16 for (int i = 0; i < dev.length; i++)
17 {
18 dev[i].addObserver(devicesObserver);
19 new DevicePropertyListener(dev[i]);
20 }
21 }

When implementing a DeviceRegistrationListener you need to implement the onUpdate method (Line
5).
Specifically speaking when for instance a new device has been added by an other client application, the
onUpdate method will be called. In order to figure out which device has been added by the ABI System,
you might need to re-obtain the list of all devices currently known by the system by simply invoking.

1 registeredDevices = system.getMultiplexer().getAllDevices();

By keeping track of oldRegisteredDevices (Line 14) you can find out which of the devices have been
either added or removed. Note when a device has been added you might need to consider of registering
the provided Observer called devicesObserver and a new DeviceRegistrationListener since you might
want to receive device changes (device and property changes) in the near future as well. This applies to
a device that has been removed from the ABI System too. So accordingly delete the Observer of the old
device since it does not exist anymore.

1 private class MyDeviceRegistrationListener implements DeviceRegistrationListener
2 {
3 //...
4
5 public void onUpdate()
6 {
7 //...
8 // When a device has been added
9 registeredDevices[i].addObserver(devicesObserver);
10 new DevicePropertyListener(registeredDevices[i]);
11
12 //...
13 // When a device has been removed
14 oldRegisteredDevices[i].deleteObservers();
15 }
16 }

The detailed code for this example can also be found at: http://www.ini.unizh.ch/∼snufer.

9.1.3 Running the example

Before running this example, you also might want to observe the messages that are being sent between the
participants. So you can do this as explained in the previous chapters (See section: 8.1.3).

term project, July 2005

http://www.ini.unizh.ch/~snufer

9.1. SIMPLELOGGER 49

Having once connected to the server you can start the application and you will be able to log any traffic
that the logger has signed up for.

For the appliance of this application please note that this example is not intended for professional us-
age. It has been explicitly developed for this tutorial. However this application can be started in two ways.
By providing a filename as a parameter, the application will log into the file instead of the regular standard
output (See below).

1 public static void main(String[] args) throws IOException, ConnectException
2 {
3 Writer out;
4 ABISystem abiSystem;
5
6 if (args.length > 0)
7 {
8 out = new FileWriter(new File(args[0]));
9 }
10 else
11 {
12 out = new OutputStreamWriter(System.out);
13 }
14
15 abiSystem = new ABISystem(SERVER_NAME, SERVER_PORT);
16 SimpleLogger logger = new SimpleLogger(abiSystem, out);
17 logger.start();
18 }

9.1.3.1 Compile and Startup

cd into the src directory of the SimpleLogger application.
An additional optional parameter can be provided that switches the output to a file instead of the console
(As mentioned above).

• Windows
-How to compile the application:

javac -classpath ../../libs/RBC-API.jar;../../libs/RBCRemoteImpl.jar;. *.java

-How to run the application.

java -cp ../../libs/RBC-API.jar;../../libs/RBCRemoteImpl.jar;. SimpleLogger logfile.log

• Linux
-How to compile the application:

javac -classpath ../../libs/RBC-API.jar:../../libs/RBCRemoteImpl.jar:. *.java

-How to run the application:

java -cp ../../libs/RBC-API.jar:../../libs/RBCRemoteImpl.jar:. SimpleLogger logfile.log

• Eclipse Platform
Include the RBC-API.jar as explained in the beginning of the tutorial in section 6.2.

When the compilation and the startup were successful you should see following window (See figure: 9.2).

When having a glance into the logfile you will notice that gradually events are being logged (See figure: 9.3).

term project, July 2005

CHAPTER 9. A SIMPLE LOGGING SERVICE 50

Figure 9.2: SimpleLogger Application

Figure 9.3: SimpleLogger Logfile

Figure 9.4: SimpleLogger Logfile continued

term project, July 2005

Chapter 10

An AreaViewer Service

10.1 AreaViewer

The next example has rather been made for a demonstration purpose. Specifically speaking it has been
developed to visualize the interaction between multiple tools such as the interaction between the ABI Admin
([NB05a]) and this one (AreaViewer).

10.1.1 Introduction

The AreaViewer is a graphical monitor of an area. It displays the states of all devices within this area and
offers the opportunity to change the states of the effectors (See figure: 10.1). Predominantly this agent is
used for observing areas. But as a further step it could be expanded to real control panel such as the ABI
Admin ([NB05a]).

This tool arose of the necessity to have a possibility to visualize an area (i.e. a room) in an easy way. The
AreaViewer provides a graphical interface that illustrates all devices currently added to a specific area. It
is even capable to incorporate newly added devices, etc. in an ad-hoc fashion. The graphical user interface
has been kept very simple, but it should give a general impression about the opportunities for any further
implementations (i.e. The ABI Admin ([NB05a])).
In order to keep the AreaViewer as simple as possible, we only added the basic functions such as displaying
the devices (i.e. Presence sensors, Lights and their effectors) and additionally to enable any device property
alterations to be taken (i.e. switching on and off the lights), to it (Provided that each device can be altered
in an either readable or writeable way ([NB05b])). An extra feature that has been implemented is an email
notification message that can be sent to a destined person upon a device property change. For instance when
the presence sensor suddenly becomes active an email can be sent to a given email address.

51

CHAPTER 10. AN AREAVIEWER SERVICE 52

Figure 10.1: AreaViewer application

10.1.2 Code inspection

The central part of this application is the AreaPanel class (See figure: 10.2). The AreaPanel class
displays all devices which are currenlty member of a specific area. Currently supported devices are presence
sensors (PresenceSensorPanel) and lights (effectors) (LightBulbPanel).
Each devices type has been packed into a separate class and necessarily have been derived from a JPanel
since we need a way draw the images such as a light bulb image on to such a panel (See below).

1 private class LightBulbPanel extends JPanel implements PropertyChangeListener
2 private class PresenceSensorPanel extends JPanel implements PropertyChangeListener

term project, July 2005

10.1. AREAVIEWER 53

Figure 10.2: AreaViewer UML diagram

Because of the fact that both devices need to be notified upon device property changes, both need to imple-
ment the PropertyChangeListener Interface.

One other interesting part which might catch someones eye is when adding or removing devices to/from an
area while observing the area with the AreaViewer.
With the help of the ABI Admin ([NB05a]) application, which is capable of administrating a whole bunch
of things such as adding or removing devices to respectively from an area you shouldn’t have any problems
to test this case. As a result you will notice that the AreaViewer will adapt the new state and display the
current area situation accordingly.

This is possible since the AreaViewer will be notified about any environmental changes of an area. Of course
as we have seen in previous applications this is only possible when implementing an Observer (See below).

1 public void update(Observable o, Object arg)
2 {
3 SwingUtilities.invokeLater(new Runnable()
4 {
5 public void run()
6 {
7 if (areapanel != null)
8 {
9 areapanel.updateArea();
10 areapanel.validate();
11 repaint();
12 }
13 }
14 });

term project, July 2005

CHAPTER 10. AN AREAVIEWER SERVICE 54

15 }

The method call updateArea() hereby updates the area in the sense that it needs to figure out if either new
devices have added or existing devices have been removed by the ABI System (See below).
The methods removeDeviceFromPanel() and addNewDeviceToPanel() ultimately update the area panel
accordingly.

1 public void updateArea()
2 {
3 olddevices = devices;
4 devices = thisarea.getAllDevices();
5
6 // Remove old device from the panel
7 for (int i = 0; i < olddevices.length; i++)
8 {
9 boolean toberemoved = true;
10 // For all devices found in this area
11 for (int j = 0; j < devices.length; j++)
12 {
13 if (olddevices[i].getDeviceURI().equals(
14 devices[j].getDeviceURI()))
15 {
16 toberemoved = false;
17 }
18 }
19 if (toberemoved)
20 {
21 removeDeviceFromPanel(olddevices[i]);
22 }
23 }
24
25 // Add new devices to the panel
26 for (int i = 0; i < devices.length; i++)
27 {
28 boolean tobeadded = true;
29 for (int j = 0; j < olddevices.length; j++)
30 {
31 if (olddevices[j].getDeviceURI().equals(
32 devices[i].getDeviceURI()))
33 {
34 tobeadded = false;
35 }
36 }
37 if (tobeadded)
38 {
39 try
40 {
41 addNewDeviceToPanel(devices[i]);
42 }
43 catch (DeviceRegistrationException e)
44 {
45 e.printStackTrace();
46 }
47 }
48 }
49 }

term project, July 2005

10.1. AREAVIEWER 55

The addNewDeviceToPanel() (Line 41) method needs to create new devices and further creates an appro-
priate panel that illustrates one specific property. i.e. a lightstatus or a presencestatus. For each created
property panel we must then locate a free space within the areapanel. This is accomplished with the
addOnFreeSpace() method inside the addNewDeviceToPanel() method (Line 17).

1 private void addNewDeviceToPanel(Device device)
2 throws DeviceRegistrationException
3 {
4 // Read out all available properties
5 properties = device.getAllProperties();
6 for (int k = 0; k < properties.length; k++)
7 {
8 // Is a light
9 if (properties[k].getName().equals("lightstatus"))
10 {
11 Property lightstatusProperty = properties[k];
12
13 // Create LightBulb
14 LightBulbPanel lbp = new LightBulbPanel(
15 lightstatusProperty, device);
16 devicePanels.put(device, lbp);
17 addOnFreeSpace(lbp);
18 }
19 //...
20 }
21 }

The detailed code for this example can also be found at: http://www.ini.unizh.ch/∼snufer.

10.1.3 Running the example

Before running this example, you also might want to observe the messages that are being sent between the
participants. So you can do this as explained in the previous chapters (See section: 8.1.3).
Having once connected to the server you can start observing an area. Unfortunately you must configure this
inside the code since we don’t want to bother with cumbersome dialogs that would have been needed.

As stated in the introduction (See section: 10.1.1) this tool has been developed for a pure demonstra-
tion purpose only. So please note that this example is not intended for professional usage. It has been
explicitly developed for this tutorial also.

10.1.3.1 Compile and Startup

cd into the src directory of the AreaViewer application.

• Windows
-How to compile the application:

javac -classpath ../../libs/RBC-API.jar;../../libs/RBCRemoteImpl.jar;. *.java

-How to run the application.

java -cp ../../libs/RBC-API.jar;../../libs/RBCRemoteImpl.jar;. AreaViewer

term project, July 2005

http://www.ini.unizh.ch/~snufer

CHAPTER 10. AN AREAVIEWER SERVICE 56

• Linux
-How to compile the application:

javac -classpath ../../libs/RBC-API.jar:../../libs/RBCRemoteImpl.jar:. *.java

-How to run the application:

java -cp ../../libs/RBC-API.jar:../../libs/RBCRemoteImpl.jar:. AreaViewer

• Eclipse Platform
Include the RBC-API.jar as explained in the beginning of the tutorial on section 6.2.

When the compilation and the startup were successful you should see the allready known window (See figure:
10.1).

The tutorial is hereby seen as ended. For any other issues please consult the appropriate JavaDoc sec-
tion (See chapter: 5.2) and for a further practical example you might also want to have a lock at the ABI
Admin ([NB05a]) application.

term project, July 2005

Part V

Discussion and Future Work

57

Chapter 11

Discussion and Future Work

11.1 Overview

When basically detaching bundles into separate client applications we can observe following benefits and
liabilities:

Centralised System Characteristics:

• One component with non-autonomous parts

• Component shared by users all the time

• All resources accessible

• Software runs in a single process

• Single Point of failure

• Single Point of control

Distributed System Characteristics:

• Multiple autonomous components

• Components are not shared by all users

• Resources may not be accessible

• Software runs in concurrent processes on different processors

• Multiple Points of control

• Multiple Points of failure

Certain common characteristics can be used to assess distributed systems:

• Resource Sharing: A Resource manager controls access, provides naming scheme and controls con-
currency.

• Openness: Detailed interfaces of components need to be published.

• Concurrency: Components in distributed systems are executed in concurrent processes and the
integrity of the system may be violated if concurrent updates are not coordinated.

58

11.2. DISCUSSION 59

• Scalability: Allow the system and applications to expand in scale without change to the system
structure or the application algorithms.

• Fault Tolerance: Hardware, software and networks fail!

• Transparency: Distributed systems should be perceived by users and application programmers as
a whole rather than as a collection of cooperating components. Enable local and remote information
objects to be accessed using identical operations (Access Transparency).
Enable information objects to be accessed without knowledge of their location (Location Transparency).
Enable several processes to operate concurrently using shared information objects without interference
between them (Concurrency Transparency).
Enable multiple instances of information objects to be used to increase reliability and performance
without knowledge of the replicas by users or application programs (Replication Transparency).

We accomplished following stated common characteristics:

Characteristics Solution
Resource Sharing We definitely accomplished this point because we only provide one

ABI System that actually acts as the resource manager.
Openness The RBC Protocol and also the RBC API provide a stable stan-

dard that defines possible actions for distributed client applica-
tions.

Concurrency Violation does not take place since we only provide one resource
manager. The faster wins!

Scalability As a matter of fact the scalability criteria is quite difficult to
accomplish but since we going to have an option to transplant
any distributed client application to a bundle as well (See section:
11.3) we can silently say yes. On the other hand though we must
consider that the ABI System consums quite a chunk of CPU and
memory as well. So the scalability factor might not one of the
criteria that can be identified as accomplished. Still a distributed
approach does still make the entire system more scalable as it
would when only providing a single system component.

Fault Tolerance Although fault tolerance is a criteria which can frankly speaking
only accomplished by either providing recovery or redundancy, we
achieve this criteria explained at section: 11.3.

Transparency Transparency is definitely one of the criteria that we have been
aspiring. We provide access, location, concurrency and in one
way also replication transparency by applying the RBC API (See
section: 11.2)

Table 11.1: Characteristics and their solutions

11.2 Discussion

When facing the fact that the ABI System has been fully implemented using bundles one might think that
the adaptability and the extendability is greatly preserved and ensured. Hereby the bundles are comparably
related to applications rather then regular packages as most applications have been implemented with.
Unfortunately we’ve noticed that this wasn’t true. Imagine having the task of assembling a bunch of separate
applications in a way that they should interact with each other but you can’t really see the interaction going
on between the required applications. Concretely speaking, when unrolling the dependencies in the ABI
System one can see the big mess we have inside. Especially with the usage of the Wireadmin which in turn
is design technically a very good idea and concept but as a result the entire framework application gets that
much of low coupled that barely anyone is capable of keeping track of the entire system anymore. The flip
side to this coin is that bundles are praised to be developed independently and still require each other in an

term project, July 2005

CHAPTER 11. DISCUSSION AND FUTURE WORK 60

invisible way.
Additionally image how such as system is being maintained by a semi-yearly shift of the developers...
Well we must confess that exaggeration was involved in the previous statements. But the previous system
was that unstable that we practically needed to go through the entire code and partly even get rid of some
bundles.
This was because the system hasn’t been developed with the intention to be continued.
In short in the first part the entire ABI System has been refactored completely. As a second the RBC
Protocol ([NB05c]) and the RBC API has been developed. With the applicability of the API we can reduce
the system knowledge for other developers close to a minimum. Thereby we provide a common way of a
programming API that most of the developers should be familiar with. Even though a OSGi Framework has
been used one must know that the art of programming is partly changed in the way that it might restrict
the developers in a form of a schema which might impact the developers design skills in a negative way.

11.3 Future Goal

This API strives for the goal of providing a third implementation of the RBC specification that is capable
to support client applications to either be installed and launched as a separate bundle or as a distributed
client application. Depending on the needs this might be a considerably huge advantage and might reflect
the negative impacts such as overhead and uncertainty that a distributed system commonly brings along.

Nevertheless a distributed client applications still enjoys a huge advantage in all full strengths when consid-
ering non-functional requirements such as usability, testability and maintenance. A combination of the two
can be particularly favorable in the development cycle. For instance to reduce the complexity and to advance
the testability applications can be developed and tested completely independent. Without having to put up
with the big OSGi Framework at all. Having once tested and completed the application, one can consider
to switch the underlying reference implementation (See figure: 11.1) that installs and runs the application
as a separate bundle inside the OSGi Framework.

However for the majority a distributed client application can be a benefit in all its particulars. Especially
when dealing with Graphical User Interface applications which are evidently not intended to be installed
as a bundle since a window termination would cause the entire OSGi Framework to be terminated. An AI
application however might benefit when being installed and utilized as a bundle rather when being run as a
separate distributed client application.
For such applications in particular when incorporating intelligence control this is inevitably a better suited
solution because bundles still do perform better then a client application. For instance imagine an AI
application that would suddenly stop controlling an area because of a network failure. Other disadvantages
such as the network overhead have been identified above (See section: 11.1).

term project, July 2005

11.3. FUTURE GOAL 61

Figure 11.1: Future Architecture

term project, July 2005

Part VI

Glossary and Bibliography

62

Chapter 12

Glossary

Abbreviation Explanation / Comment

ABI Adaptive Building Intelligence
ABI System The ABI System implemented using an OSGi Framework
Apache Axis Apache Axis is an implementation of the SOAP
Bundles Java JAR archive
HTTP Hypertext Transfer Protocol
JAR Java Archive
RBC Remote Building Control (Protocol)
RBC Server The Server Bundle of the ABI System
RBC API The protocol abstraction layer API that implements the RBC Protocol
RFC Request for Comments
RMI Remote Method Invocation (Java Technology)
RSI Remote Service Invocation
Service Interface exported by the service provider bundle
SOAP Simple Object Access Protocol (W3C)
OSGi Open Service Gateway initiative

Table 12.1: Glossary

63

Bibliography

[ECL] Eclipse. http://www.eclipse.org.

[ETH] Ethereal. a packet sniffer tool. http://www.ethereal.com/.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[JAVa] J2se. http://www.sun.com.

[JAVb] Rbc api javadoc.

[KNO] Knopflerfish. http://www.knopflerfish.org/index.html.

[NB05a] Stephan Kei Nufer and Mathias Buehlmann. Adaptive building intelligence – administration tool,
2005.

[NB05b] Stephan Kei Nufer and Mathias Buehlmann. Intelligent, learning system – a new abi system
built on the open services gateway initiative. Technical report, University of Applied Sciences
Rapperswil, Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology,
Zurich, Switzerland, 2005.

[NB05c] Stephan Kei Nufer and Mathias Buehlmann. Remote building control protocol – a protocol that
is used to transfer building data. Technical report, University of Applied Sciences Rapperswil,
Switzerland and Institute of Neuroinformatics, Swiss Federal Institute of Technology, Zurich,
Switzerland, 2005.

[OSG] Osgi alliance. http://www.osgi.org.

[PAC] Packet analyzer. a packet sniffer tool. http://www.networkchemistry.com/products/packetyzer.

64

http://www.eclipse.org
http://www.ethereal.com/
http://www.sun.com
http://www.knopflerfish.org/index.html
http://www.osgi.org
http://www.networkchemistry.com/products/packetyzer

Index

Analysis
API Goals, 8
Blocking Call, 8
Domain analysis, 4
Domain Model, 4
Dynamics, 5
Non Blocking Call, 8
Protocol specification, 8

Architecture and Design
API Specification Overview, 11
Architectural overview, 10
Communication Subsystem

ThreadPool, 22
Exceptions

AreaCreateException, 18
AreaRemoveException, 18
ConnectException, 18
DeviceAlreadyInRoomException, 18
DeviceDeregistrationException, 18
DeviceNotFoundException, 18
DeviceReadException, 18
DeviceRegistrationException, 18
DisconnectException, 18
InvalidValueException, 18
LocationChangeException, 18
PropertyNotExistException, 18
PropertyNotReadableException, 18
PropertyNotWriteableException, 18

Interfaces
Data types, 16
IDL, 16
Property Concept, 16

Lazy Acquisition Principle
Remote Proxy, 26

chapter:Implementation
RBCDummyImpl, 20
RBCRemoteImpl, 20

Common characteristics
Concurrency, 59
Fault Tolerance, 59
Openness, 59
Resource Sharing, 59
Scalability, 59
Transparency, 59

Discussion and Future Work, 58
Centralised System Characteristics, 58

Common characteristics, 58
Distributed System Characteristics, 58
Future Architecture, 60
Future Goal, 60

Implementation
General aspects and principles

Lazy Acquisition Principle, 26
Remote Proxy Principle, 27

RBC API Specification
Abstract Classes

Area, 12
Device, 12

Exceptions, 18
Interfaces

ABISystem, 14
AreaRegistrationListener, 17
Bus, 15
BusMultiplexer, 14
DeviceRegistrationListener, 17
Property, 13
PropertyChangeListener, 17
PropertyType, 15

RBC Tutorial
Accompanying Executables and Code, 29
Bundle installation, 32
Examples

A Simple Logging Service, 46
An AreaViewer Service, 51
Creating your first RBC Application, 35
The SimpleAreas application, 41

Installation, 31
Knopflerfish installation, 31
RBC API installation, 33
Telnet, 39

RBCRemoteImpl, 22
Communication Subsystem, 22

MessageDispatcher, 22

65

	I Introduction
	Introduction
	Overview
	Terms and Definitions
	Document structure

	II Analysis
	Analysis
	Introduction
	Domain Model
	Dynamics
	Protocol specification
	API abilities and responsibilities
	API Goals

	III Architecture, Design and Implementation
	Architecture and Design
	Overview
	RBC API Specification
	General
	Abstract Classes
	Area
	Device

	Interfaces
	Property
	ABISystem
	BusMultiplexer
	Bus
	PropertyType
	PropertyChangeListener
	DeviceRegistrationListener
	AreaRegistrationListener

	Exceptions

	Implementation
	Introduction
	Remote RBC API implementation (RBCRemoteImpl)
	Overview
	Communication Subsystem
	Code inspection
	ABISystemImpl and InternalABISystem

	Dummy RBC API implementation (RBCDummyImpl)
	Overview
	Code inspection

	General aspects and principles
	Lazy Acquisition Principle
	Remote Proxy Principle

	IV RBC API Tutorial
	Introduction
	Introduction
	Accompanying Executables and Code

	Installation
	OSGi Framework installation and startup
	Starting the OSGi Framework
	Installing the bundles with the GUI
	Installing the bundles with telnet

	RBC API installation

	Creating your first RBC Application
	The SimpleLightGUI Application
	Introduction
	Code inspection
	Running the example

	How to use Areas in a RBC Application?
	The SimpleAreas Application
	Introduction
	Code inspection
	Running the example
	Compile and Startup

	A Simple Logging Service
	SimpleLogger
	Introduction
	Code inspection
	Running the example
	Compile and Startup

	An AreaViewer Service
	AreaViewer
	Introduction
	Code inspection
	Running the example
	Compile and Startup

	V Discussion and Future Work
	Discussion and Future Work
	Overview
	Discussion
	Future Goal

	VI Glossary and Bibliography
	Glossary

