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Control and learning of ambience by an intelligent
building
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Abstract— Modern approaches to the architecture of living and
working environments emphasize the dynamic reconfiguration of
space and function to meet the needs, comfort and preferences
of its inhabitants. Although it is possible for a human operator
to specify a configuration explicitly, the size, sophistication and
dynamic requirements of modern buildings demands that they
have autonomous intelligence that could satisfy the needs of its
inhabitants without human intervention. We describe a multi-
agent framework for such intelligent building control that is
deployed in a commercial building equipped with sensors and
effectors. Multiple agents control sub-parts of the environment
using fuzzy rules that link sensors and effectors. The agents
communicate with one another by asynchronous, interest based
messaging. They implement a novel unsupervised online realtime
learning algorithm that constructs a fuzzy rulebase derived from
very sparse data in a non-stationary environment. We have
developed methods for evaluating the performance of systems
of this kind. Our results demonstrate that the framework and
the learning algorithm significantly improve the performance of
the building.

Index Terms— Intelligent buildings, ambient intelligence,
multi-agent architecture, asynchronous messaging, online unsu-
pervised learning, fuzzy logic

I. I NTRODUCTION

Buildings are changing their nature from static structures of
bricks and mortar to dynamic work and living environments
that actively support and assist their inhabitants. These new
buildings are expected to behave intelligently. That is, the
building is an active, autonomous, entity ([1], [2]) that pursues
goals that relate to for example; energy consumption, security,
and the needs of users.

Building intelligence poses a number of interesting chal-
lenges. Decisions must be made in near-realtime. The system
must have a way to interact with its users to obtain feedback.
On the other hand, it should not intrude on the user.

The user of a building should not have to interact directly
with the building using special input devices: input should
be derived from standard devices like switches and presence
detectors that are available in any building. Specifying rules
that describe which actions to take at which time because of
which conditions is complex and time consuming. In addition,
these rules have to be changed constantly, because preferences
and needs of users change. It is neither convenient nor cost
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effective to program a sophisticated building manually, as this
approach is too complex and static. The building thus needs
to learn its own rules of behavior based on feedback it obtains
from its occupants. Furthermore, it should continually adapt
this knowledge.

We approach these challenges using a multi-agent control
system that emphasizes local decision making. Each agent
controls and learns about a small subregion of the whole state
space.

II. D ESCRIPTION OF THEPROBLEM

A building can be regarded as an intelligent agent that
is itself recursively composed of other agents. Thus, on a
conceptual level, intelligent buildings (IBs) are similar to
other intelligent agents such as humans, animals and robots.
This equivalence allows us to apply concepts and principles
drawn from the broad literature of autonomous agents research
([1]) in the building task. However, IBs also have special
requirements that require novel solutions, because unlike mo-
bile agents that move through their environment, the building
completely contains its environment that is composed largely
of mobile agents (humans, robots, etc.) passing through itself.
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Fig. 1. Overview of our intelligent building. A multi-agent intelligent building
controller (IBC) senses and controls the building environment via sensors
and effectors attached to a common fieldbus. The IBC learns to control the
environmental requirements of its users. The organizational structure of the
building can be specified or learned.

Any kind of control and learning (figure 1) needs infor-
mation about the environment (figure 2) that it is controlling.
The less pre-specified the problem is the more must be learned
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Fig. 2. The plant: A floor of a typical building structured into rooms. All
sensors and effectors are wired to a common fieldbus network. A gateway
allows the IBC to access the fieldbus network.

through interaction with the environment. However, less pre-
specification also makes learning more difficult and it is more
likely that the system will not be able to control its envi-
ronment successfully. This trade-off between pre-specification
and learning of the structure of the environment needs to be
addressed.

Usually, learning occurs on the basis of a pre-defined
representation (eg number of variables, possible values of
variables), which implies that the underlying structure of the
problem is static. Such stability cannot be assumed in the
case of IBs, which must be able to detect and incorporate
structural changes at any point of time. Changes could for
example be new sensors and effectors (new variables) or
additional physical structures that make previously related
sensors unrelated (eg. a new wall). An additional question is
what granularity the learning should have. Should it be on the
scale of the whole building, a single floor, a room or even a
single sensor/effector?

B. Representation of Knowledge

How can knowledge about the environment and the other
agents that inhabit it be represented? Analyzing such a system

is difficult and ill-defined because most of its interactions
are with a real environment, which in practice includes many
non-deterministic components. It is desirable to have a learn-
ing procedure that uses a human-readable representation (eg
grammar, graph, decision tree, rules) that facilitates rapid
incorporation of domain specific knowledge before learning
begins rather than phenomenological methods like HMM’s or
Bayesian belief propagation networks.

C. Control and Learning

Implementing and maintaining decision rules manually for
a dynamic environment such as an IB with its ever changing
requirements is not possible in practice because of the time
and effort required to continually re-write the rules. The ability
to learn continually by itself ([3], [4]) is a basic requirement
for an IB.

One of the major aspects of ambient intelligence is that such
intelligence isinvisible, in the sense that it operates without
intruding on the user ([5]). Consequently an intelligent build-
ing doesnot have special mechanisms for interaction with its
users. Instead, it should acquire all its data, including feedback
for learning, from standard sensors (presence detectors, wall
switches etc) in a normal building. This requirement implies
that i) feedback for learning must be inferred from the state
acquired from sensor data (eg is it reward or punishment?)
and ii) that the feedback for learning is very sparse. Learning
must be one–shot (one single sample must be sufficient to learn
from). Because decisions and learning are expected to happen
in realtime, learning must be online. Learning (training) and
decision making happen simultaneously and so there can be
no distinction between a training and a production phase.

D. Consistency of Goals

An IB should assist the user to make him more comfortable
[6]. In this contextsatisfactionis defined to be minimization of
user interactions: The less a user needs to instruct the building
(eg. press a switch) to perform some action the more the IB
satisfies the user. This definition implies that the user knows
how to interact with the building, which is one of the main
reasons why our system only relies on input from standard
devices (see section II-C).

The demands of the human occupants are not the only
demands that an IB must satisfy. The demands of non-human
mobile agents (eg delivery or cleaning robots) and global
constraints such as energy consumption or security must be
met as well. These many demands change over time and
may sometimes be contradictory because of changing usage
of the building (new occupants) or changing preferences (non-
stationary environment).

III. A PPROACH

In the following sections we present a novel architecture
and learning procedure that is capable of coping with the
above requirements, and demonstrate the applicability of our
approach by evaluating data accumulated from an extensive
test period in a real building.
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Our approach focuses on the building as a whole rather
than on a collection of independent rooms. This approach
is in contrast to others ([7],[8]), which focus on making a
single room intelligent through the usage of special sensors
and effectors like cameras or robotic arms. For example Coen
et al. [8] detect where people are located in the room (person
tracking), what these people are doing (pointing) and interact
with people in the room by speech recognition (input) and
speech synthesis (output). Our approach is different, because
we regard the building as an entity that provides intelligence
to theambiencewithout special devices or methods for inter-
action with the user.

Our system learns logic rather than statistics. Knowledge is
represented by fuzzy rules that are used for decision making
(see [9]). The fuzzy rules used for decisions are constructed
by a learning process which continually modifies the set of
rules according to feedback it receives from the environment.

In contrast to the approach by Hagras et al. [10], our
learning algorithm is completely unsupervised. All feedback
is acquired by means that the user does not notice, and by
actions the user would also execute if there were no learning
system present (e.g. switching on the light).

IV. A RCHITECTURE

A. Multi-Agent System

Our IB is managed by a multi-agent system (MAS) in which
there is no central coordinator. We define an agent (following
[2]) to be a system that is situated in some environment, and
that is capable of autonomous action in this environment in
order to meet its design objectives. Depending on its sophis-
tication, an agent may have one or several of the following
properties: reactivity, pro-activity (goal-directed behavior) and
social ability (interaction with other agents) ([2]).

Each agent is responsible for one specific task and offers
this task as a service to other agents. Agents collaborate with
each other to achieve their various aims. The collaboration is
mediated by asynchronous messages.

Our system consists of several different types of agents
(see figure 3). The agents of the lowest layer are responsible
for the interface to the IB’s device bus (see section IV-
B.1). The middle layer consists of theDistributionAgentand
StructureAgent(see sections IV-B and IV-C). The intelligent
learning agents are located in the top level. These are various
instances ofControlAgent, and are responsible for controlling
the effectors.

All agents operate within the ABLE (Agent Building and
Learning Environment) framework ([11]). ABLE implements
JAS ([12]), an architecture for agents which run concurrently
on physically distributed systems. JAS implements the FIPA
abstract agent architecture (FIPA Standard 00001, [13]).

B. Interagent Communication

A MAS platform usually provides messaging services (eg
JAS, [12]). The requirements for an interagent communication
facility as we require it are different from those of tradi-
tional MOM (message oriented middleware). In contrast to
traditional MOM, relationships between agents of a MAS are
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Fig. 3. The intelligent building controller (IBC) consists of multiple types
of agents. The top layer is populated by many instances of the control agent;
the middle layer contains the support agents (distribution agent and structure
agent) and the lower layer the bus agent. The bus agent provides the interface
to the plant.

highly dynamic: New agents get started and running ones get
stopped. Thus, a MAS communication facility does not know
in advance which constellation of entities will make use of its
services, or which types of messages will be transmitted.
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Fig. 4. Asynchronous, interest-based messaging between agents, which acts
as a mediator between agents.

An agent that sends out a message of some type does not
know which other agent is interested in receiving its message
and does not wait for acknowledgment. This relationship
between agents is managed by amessage distributor, which is
an independent agent running as part of the MAS. It collects
the interests of all running agents and distributes messages
according to those interests (figure 4). Agents announce their
interests to the message distributor. An agent (agent a) wishing
to send a message (type C) passes this task on to the message
distributor, which distributes the message according to the
collected interests of all the other agents. Distribution is done
in parallel and asynchronously.

This and the fact that agents look themselves up in a
directory makes a MAS loosely coupled and robust.
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1) Topics: The DA (distribution agent) manages interests
in terms of topics which represent a kind of message. All
register interestand unregister interestmessages relate to a
specific topic. The DA does not know the available topics in
advance: The first time an interest in a topic is registered it
automatically creates this topic. If no agents declare interest
in a topic anymore the distribution agent destroys the topic.
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Fig. 5. Overview of interactions inside the MAS (upper part of figure, IBC)
and with its environment (Plant, which is not part of the MAS). Multiple
instances of the control agent are running, each of which instantiates one or
multiple decision and learning units (DLUs, see figure 6 and figure 13).

Not only the communication between multiple agents is
managed in terms of topics, but also the external data. External
data describes all messages flowing between some agent that
is part of the MAS and other entities (all physical sensors
and effectors) which are not. This external data provides the
interface between the environment and the MAS. An agent
can effect the environment by sending a message to this
specific topic (effector). Messages sent to an external topic are
automatically forwarded to the agent responsible for external
communication; In our case, theBus agent. The bus agent
is notified by the distributor whenever topics that represent
external data are created or destroyed . The bus agent responds
by starting/stopping delivery of data updates on these topics.
Figure 5 summarizes the interaction between the agents and
the environment.

C. Generic Structure Information

An intelligent building controller (IBC) requires extensive
knowledge of the structure of the building it controls. This
includes the relationships between sensors and effectors, as
well as the relation of these effectors and sensors to the static
structure (e.g. where are they physically located).In addition,
such structural information must also be capable of relating
dynamic and static elements, for example when a mobile agent
moves through the building interacting first with one room,
then with another.

Since structural information varies widely between different
rooms, floors and buildings, it can not be directly encoded
into the control system. Ideally, an adaptive system should
not depend on pre-specified knowledge at all – it should be
capable of discovering its structure itself. For this purpose
our system uses a generic structure description service called
structure agent(SA). All other agents request their structure
information from this agent. The structure is described by a
recursive composite structure similar to the composite pattern
in object oriented software engineering ([14]). The description
consists of clusters which contain other clusters and elements.
Elements are either sensors, effectors, feedback devices or a
combination of these. Figure 11 shows a visualized example of
such a definition and figure 12 shows the formal definition of
a single room. We choose acluster rather than a room as the
basic unit of building structure, because rooms often contain
communities or regions of common interests that operate as
a cluster. The clusters may even extend across the physical
boundaries of rooms.

The definition of the structure can either be pre-specified
(static), dynamically discovered or a mixture thereof. For
simplicity we use a pre-defined static structure in this paper.
We describe our approach for dynamic structure discovery
from data by correlation analysis in Trindler et al. [15].

V. CONTROL

The core of an IBC are entities which are taking decisions
about the state of all effectors of the building. Such a system
constantly evaluates all available data about the building and
changes its outputs according to it. These decisions need to
be taken in near realtime.
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Fig. 6. A Decision and Learning Unit (DLU) consists of a fuzzy logic
controller (FLC), a goal evaluator and a learner that generates rules from
sparse events.

Our system takes decisions on the basis of a number
of fuzzy logic rules (rulebase). A rulebase represents the
knowledge of the outside world and specifies how to react
to input signals. FLCs (fuzzy logic controllers), as shown
in figure 6, constantly evaluate the inputs available and take
decisions about the outputs of the system according to the



IEEE T. ON SYSTEMS, MAN AND CYBERNETICS:A, SPECIAL ISSUE ON AMBIENT INTELLIGENCE, 2004, IN PRESS 5

fuzzy rulebase. The inputs available are, in our case, divided
into two groups: The first group consists of inputs that relate
to the building as a whole. This are variables such as humidity,
temperature, radiation, illumination and time. The inputs of the
second group are variables that are available for every room.
These group consists of presence information, daylight (indoor
light intensity), light status and blind status. The output of the
decision making is binary, eg bring the blinds up/down and to
switch on/off the light.

A. Localized Decision Making

The input and output of an IBC is high dimensional, yet
decisions about particular lights and blinds are only influenced
by a very small subset of all available data in the system.
It is thus not practical (from a computational point of view)
to use one single FLC to decide the state of all outputs of
the system. To simplify the system from the point of view
of the design and architecture, computational complexity, and
learning we use a FLC for every output in the building. We call
a unit which takes decisions and learns about one particular
output a decision and learning unit(DLU, see figure 6). A
DLU is capable of making decisions about it’s output on the
basis of very few input signals and is thus fast and efficient.
This emphasizes thelocalized decision makingapproach of
the overall architecture. Each instance of the control agent
instantiates one or multiple DLUs (figure 5), depending on
the number of outputs the cluster has that is associated to the
control agent instance.

B. Multilayer Decision Making

Not all decisions are taken by agents. As many decisions as
possible are made directly on lower levels to reduce system
complexity and increase system stability. These purely reactive
decisions are made directly by the fieldbus network, which
binds for example all the connections between switches and
the respective actuators. These bindings ensure that when
a light-on switch is pressed, the appropriate light is turned
on immediately. This minimum control allows the system to
operate at a very basic level, even if the whole MAS fails. This
is a very important requirement, as a building is something on
which human occupants rely heavily.

C. Fuzzy Rulebase

The rulebase can either be engineered by a human expert
or be produced by a machine learning algorithm. We take the
later approach and use a fuzzy learning algorithm to learn
the rulebase automatically on basis of a punish/reward online
learning algorithm. The rulebase consists of a number of
simple if-then rules:
R1 : if x is A1 andy is B1 thenz is C1

R2 : if x is A2 andy is B2 thenz is C2

Rn : if x is An andy is Bn thenz is Cn

whereRn is the label of the rule,x andy are input variables
and z is the output (control) variable;Ai , Bi and Ci are
linguistic variables;x, y andz are fuzzy variables.

The rulebase consists of different types of rules: static rules
and dynamic rules. Static rules encode the fixed requirements
of the system that can not be changed, whereas dynamic rules
encode the preferences of users. Dynamic rules are generated
automatically on basis of feedback from the system by a
learning process. In case of a conflict of interest between
static and dynamic rules the decision taken by static rules gets
preference. Only knowledge required by the IBC is encoded
within the rulebase. All reactive decisions made on lower
levels (fieldbus) are not part of the rulebase.

D. Fuzzy Inferencing

Fuzzy Temperature = new Fuzzy(-30.0 , 100.0) {
Shoulder A_veryCold = new Shoulder(-30.0, 0.0, L);
Triangle B_cold = new Triangle(-5.0, 5.0, 14.0);
Triangle C_warm = new Triangle(8.0, 16.0, 24.0);
Triangle D_veryWarm = new Triangle(18.0, 33.0, 48.0);
Shoulder E_hot = new Shoulder(28.0, 100.0, R);

};

Fig. 7. Formal definition of the fuzzy variable temperature (Celsius degrees)
in ARL syntax whereas R is Right and L left.
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Fig. 8. Graphical definition of the fuzzy variable Temperature. It has
membership functions labeledA,B,C, D andE as defined in figure 7.

The FLC as described above only uses fuzzy variables
for computing its output (inferencing). All real-valued input
data is first fuzzified with statically defined membership func-
tions (Triangular, Shoulder and Trapezoidal [16]). Membership
functions (see figure 7 and figure 8) are specified manually for
every type of input data. These functions are pre-specified and
are not learned. The membership functions incorporate implicit
domain knowledge.

The steps executed by the inferencing engine are:

• fuzzification of input variables
• rule evaluation
• aggregation of the rule outputs
• defuzzification

We use mamdani-style fuzzy inferencing, and the center of
gravity approach for defuzzification [16]. ARL syntax (Able
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Rule Language, [17]) is used for the formal definition of
fuzzy variables and rules, because it offers a simple, powerful,
and Java-like syntax for the definition of fuzzy inferencing
processes.

VI. L EARNING

Intelligent buildings pose a very difficult learning problem
because they require online learning from sparse data in a non-
stationary environment. Most machine learning algorithms are
unsuitable for such an environment because they can not cope
with non-stationary environments, online learning, or sparse
data. Consequently, we developed our own learning algorithm
specifically suited for such an environment.

A. Overview

Our algorithm extends the inductive fuzzy learning algo-
rithm of Castro et al. [18], [19] and the work of Bonarini et
al. [20], [21], [22]. It uses principles similar to inductive logic
programming [23] to deduce logic from data. and produces
maximal structure fuzzy rules that are continually adapted
(driven by feedback from the environment, see figure 5).
The maximal structure property ensures that at any point of
time the state space is covered as completely as possible
(e.g. rules generalize well). The algorithm copes with a non-
stationary environment by not assuming that feedback from
the environment is self-consistent.

Conceptually, the algorithm uses all available knowledge
about the environment (samples) as constraints to construct
a maximal structure rulebase. When a new sample becomes
available this new knowledge is used to either strengthen
or modify the existing set of rules. This principle is based
on the premises of TMS (truth maintenance systems, [24]).
A TMS is a theoretical approach commonly used to reason
within the constraints set by all available knowledge about an
environment [19].

Online learning requires a constant upper bound on memory
usage to avoid the requirement of infinite memory in the limit
of infinite running time. The bound means that it is not pos-
sible to store all available samples about the environment.On
the other hand some memory of past samples must be retained
so that new knowledge can be incorporated. We achieve this
balance by storing only fuzzified samples.

Fuzzification of a sample involves the transformation of all
real valued input values into semantic fuzzy labels. To do so,
the fuzzification uses the definitions of the fuzzy variables (see
section V-D). The number of all possible fuzzified samples is
low (this constitutes the upper bound). A fuzzified sample can
be regarded as a very specific rule (only a single data point in
fuzzy state space). Every such data pointp in state space has
an output valueyp assigned to it.

All fuzzified samples together provide the constraints for the
generalization process that consists of two operations: i) Fuzzy
samples are merged together into single rules if they do have
the same output value assigned to their respective data points
in state space and ii) Fuzzy samples are enhanced (amplified)
until they are as general as possible. This is done by gradually
adding more and more conditions to the antecedents of the
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Fig. 9. The effect of operatorsAmplify and Subsumesas shown in two
dimensional fuzzy state space. Amplification adds additional conditions to
the antecedents of a rule. A rule that subsumes another one is either more
general than the other rule (both rules have the same output) or the rule
contradicts the other one (contradictory output values).

rules (See operatorsamplify and amplifyIsPossiblein the
following section).

New samples are triggered by events in the environment
(change of state). The first action after fuzzification is to
decide whether such a sample is a reward or a punishment, by
deciding whether the output value associated with the input
values of the sample contradict the current generalization or
not. The operatorssubsumeand antecedentSubsumeare used
(see next section for definitions and figure 9) to decide whether
one rule subsumes an other one (eg includes an other rule,
which then becomes irrelevant).

Because the environment is not stationary, it is not enough
to only add samples to the known facts. Old ones must also be
removed, if they contradict new facts. This detection is done
by anchoring all generalized rules in the rulebase to known
data points. When a rule is removed or modified in such a
way that an anchor point is no longer part of the rule, then
the associated sample is removed from the list of known facts.
All valid samples are incorporated such that their constraints
are met: There are no outliers.

B. Definitions

1) More General: A rule Ri is more generalthan ruleRj

if it covers a bigger part of the state space thanRj .
2) Subsume:A rule Ri subsumesrule Rj if all antecedents

of Rj are also antecedents ofRi and if the output ofRi and
Rj are equal.AntecedentSubsumeis true if only the first of
the conditions forsubsumesholds (but the outputs could be
different).

3) Amplify: Amplify computes a set of rules which are
generalizations of a ruleRi . amplifyIsPossibleis either true
or false for each of these generalizations. An amplification
(a single rule) is possible if it does not contradict any facts
(feedback from environment).
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C. Algorithm

The following procedure is executed every time the system
receives new input (which can be a punishment or a reward).
Two sets are used: thetraining setRT accumulates all fuzzified
feedback received from the environment. Thedefinitive rule
set RDEF contains the current set of rules (ruleset).RDEF

is the generalization of the constraints set by the feedback
accumulated inRT . A rule rT consists of a number of
antecedentsETi such thatrT = (X1 is ET1 and X2 is ET2....
and Xn is ETn), where Xi are fuzzy variables andETi is a
subset of the labelsL(Xi) of the fuzzy variableXi .
Algorithm:

0 Wait for new input.
1 Transform the real-valued sample into an training set en-

try (fuzzification). This new training set entry becomes
rule rT . rT has a set of antecedent conditionsETi for
every fuzzy input variableXi .

2 Test for every rulerD that is part of the definitive ruleset
(rD ∈RDEF) whether antecedentSubsume(rT , rD) is true.
If yes, assignra = rD (ra ∈ RDEF) for the rD for which
antecedentSubsume(rT ,rD) is true and go to step 3.
If no, go to step 8.

3 Test if subsume(rT ,ra) is true. If yes, the input sample
was a reward. Stop and go to step 0. If subsume(rT ,ra)
is false there is an invalid rule inRDEF (environment
changed). At this point the output valueya of the sample
is different from the output valueyT of a rule in the
definitive ruleset (ya 6= yT ). Go to step 4.

4 If all ETi ⊂ Eai (i = 0..N) and a minimum of one of
these subsets is a real subset (|ETi|< |Eai|) the rule can
be re-used. Go to step 5 in this case. If not, go to step
6.

5 Assignrm = ra. Reassign everyEmi as following:Emi =
Eai −ETi (remove all conditionsETi ⊂ Eai from Eai).
Add rm to the definitive rulesetRDEF.

6 Removera from the set of definitive rulesRDEF and go
to step 7.

7 Test if there are entries in the training setRT

which became invalid because of the removal
of ra. Remove all training set entriesTj for
which antecedentSubsume(Tj , ra) is true but
antecedentSubsume(Tj , rm) is false. Go to step 8.

8 Add the new samplerT to the training setRT . Go to
step 9.

9 Amplify rT and assign the resulting sorted set of am-
plifications toRA. ramp is the rule currently considered
( ramp∈ RA ). Sort RA such that the least general rule
r ∈ RA is the first element ofRA and the most general
rule r ∈ RA is the last element ofRA.

10 Assignramp to the least general rule inRA for which
amyplifyIsPossible(ramp) has not been called yet. Go to
step 11.

11 If amplifyIsPossible(ramp) is true, go to step 10. If false,
add the lastramp for which amplifyIsPossible(Ramp) was
true to the set of definitive rulesRDEF. Go to step 0.

VII. E VALUATION , EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Building: The building for all experiments is a com-
mercial office building located on the Irchel campus of the
University of Zurich. One floor of this building, in which there
are a number of offices and laboratories, is fully equipped with
sensors and effectors that can be accessed via a serial field
bus network (LON, see [25] for a discussion of LON and
other competing field bus standards). Each room is equipped
with one or several blind controllers, light controllers, light
switches, blind switches and presence detectors. In addition to
this there are outside sensors for weather data (illumination,
radiation, humidity, temperature).

A typical room is equipped with 1-4 light switches, 1-2
blind switches, 1-4 light controllers and 1-2 presence detectors
(figure 10).

Room 4174Room 4184

Presence detector

Light controller

Blind controller Outside 
Sensors

Fieldbus

IP

Key

Blind switch

Light switch

Room 4172

Floor

Fig. 10. Rooms from which data reported in this paper was obtained.
Room number 4174, for example, has two light switches, two independent
light controllers (each of these controls a number of lights), one independent
blind controller, one blind switch and one presence detector. The presence
detector also includes a luminance sensor.

2) Structure: Figure 12 shows the definition of the struc-
ture information for room 4184 as shown in figure 10. The
definition of the structure consists of clusters and elements
(figure 11). Every element is part of a single cluster and every
cluster is part of an other cluster (recursively, except the root
cluster). All decision making and learning takes place on the
basis of clusters. All elements of type effector within the same
cluster are affected by all elements of type sensor in the same
cluster.

A single DLU manages each cluster that contains one or
several effectors (eg effector=true in figure 12). Feedback for
learning is acquired from elements of the cluster which are of
type feedback(eg elements with feedback=true in figure 12).

3) Agents: Every control agent has an associated cluster
that represents the root cluster for a particular room or parts
of a room that it controls. For small rooms, one root cluster
for each room exists; However, to efficiently control big
rooms, we use several root-clusters that each control a subpart
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Cluster #326

Room 4174

Room 4184, Cluster #325

subcluster 
#2099

subcluster 
#2007

Sensor/Effector

subcluster 
#2007

#347

#348

#9005

Floor

... ...

Fig. 11. Visualization of parts of the recursive structure of the building as
defined formally in figure 12. One instance of the control agent is running
for every cluster that represents a room, as is clusters #325. See figure 13 for
details of the internal structure of the control agent for cluster #325.

(which operate independently). After start-up, the control
agent dynamically discovers the structure of its environment
(everything that is part of its root cluster) and creates a number
of DLUs such that there is one DLU for every subcluster of
the control agent’s root cluster (see figure 13 for the case of
room number 4184).

Every DLU is composed of a goal function evaluator, a
learner and a fuzzy logic controller (FLC). The goal function
evaluator asserts the interests of the system itself (eg saving
energy, providing security) by providing feedback to the
learner. The learner uses the feedback available, from the goal
function evaluation or user feedback, to modify the rulebase.
The FLC uses the rulebase constructed by the learner to take
decisions. The sensors and effectors connected with a unit are
defined by the structure information (figure 12).

One instance of the control agent manages each cluster
that represents a room and thusn control agent instances
are running ifn is the number of rooms of the building. In
addition a single instance of every of the following agents is
running: distribution agent, bus agent, structure agent. That is,
the number of agents in a running system isn+3.

4) Implementation:Running the system requires 3 standard
PC servers. One of these servers is running the gateway
between, in our case, the LON network and the higher level
logic is running on the other two servers. These servers run the
whole MAS. For stability and scalability reasons we choose to
distribute the MAS over two physically different servers. One
of the MAS servers is running the lower-level base services
(messaging, bus abstraction) and the other one is running the
higher level decision making and learning.

B. Analysis of Results

1) Input Data: Examples of raw input data sequences are
shown in figure 14. See figure 6 for the input and output
signals used.

<cluster id="325" displayName="4184_" >
<cluster id="326" displayName="4184_" >

<cluster id="2007" displayName="4184_">
<element id="343" type="light"
effector="true" sensor="true" feedback="false"/>
<element id="345" type="lightSwitch"
effector="false" sensor="true" feedback="true"/>

</cluster>
<cluster id="2099" displayName="4184_">
<element id="344" type="light"
effector="true" sensor="true" feedback="false"/>
<element id="346" type="lightSwitch"
effector="false" sensor="true" feedback="true"/>

</cluster>
[...]
<element id="347" type="daylight"
effector="false" sensor="true" feedback="false"/>
<element id="348" type="presence"
effector="false" sensor="true" feedback="false"/>

</cluster>
<element id="9005" type="info" effector="false"
sensor="false" feedback="false">

orientation=east
</element>

</cluster>

Fig. 12. Structure information for a single room, expressed in XML
syntax. ID #325 represents the room 4184 and consists of element #9005
and subcluster #326. #326 consists of a number of subclusters and elements
(only some are shown). For every subcluster of #326 a decision and learning
unit (DLU) is instantiated as shown in figure 13

2) Performance Evaluation:The performance for an IB
could be measured in different contexts, eg energy, security,
comfort or a weighted sum thereof.

Here we evaluate performance in the context of user com-
fort, postponing the issues of energy consumption and security.
We define a measurecomfort in the range 0...1, as the sum
of all periods of time during which no user interaction was
necessary compared to the total period of time. The highest
performance possible means that there was no user interaction
required. A period with no user interaction is defined as either:

• The period of time between two non-forced decisions, or
• The period of time between a forced decision (because of

a punishment feedback signal) and a non-forced decision.
In periods of time between non-forced and forced decisions

the user was not satisfied and they are thus not counted.
Because the exact point of time at which the system state did
not meet the needs of the user can not be defined exactly, the
entire period is taken as the worst case for which conditions
did not meet the wishes of the user.

c =
1
T

( |PN|

∑
i=1

pNi +
|PF |

∑
j=1

pF j

)
(1)

c∈ [0...1]. Equation 1 is the definition of performance,pNi ∈
PN is the set of all periods that start and end with a non-forced
decision, whereaspFi ∈ PF is the set of all periods that start
with a forced decision and end with a non-forced decision. A
period of time is defined as the number of seconds between
two decisions (pNi,pFi andT are in seconds).

To calculate the performance of a number of DLUs (for
example a room or a floor) we take a weighted sum of all
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ControlAgent (room 4184, root cluster #325)

DLU 
for cluster 
#2007

DLU
for cluster
#2008

DLU
for cluster
#2099

Goal
eval

FLC

R
ulebase

Learner

Goal
eval

FLC

R
ulebase

Goal
eval

FLC

R
ulebase

Learner Learner

Fig. 13. A cluster of decision and learning units (DLUs) within the control
agent. FLC: Fuzzy Logic Controller, Goal eval: Goal evaluator, DLU: Decision
and learning unit.
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Fig. 14. Examples of raw data input:(A) External illumination (real valued),
(B) presence (binary) is a series of binary pulses out of which the presence
value is computed by a low-pass frequency filter.

comfort measurements and divide it by the total duration of
the measurement period (eq 2).

ctot = ∑i Ti ∗ci

∑i Ti
(2)

i is a specific DLU,Ti is the time since the start of learning
of DLU i and ci is the performance of DLUi as calculated
with eq. 1.

Comfort is evaluated in relation to the total time elapsed
since starting the experiment. This measure is useful in eval-
uating the short term performance of the system; but not its
long term performance, because past comfort looses relevance
to the user after a relatively short period of time. As the system
continually adapts itself to new conditions performance may
drop in regard to the past. To measure this fading relevance,

we do not use the total time elapsed for evaluating the long-
term performance, but rather use a running window within
which c is calculated. A typical window size isk = 70 hours.
That is, we apply equation 1 considering only periods of time
T(pNi) ≥ t −k or T(pF j) ≥ t −k wheret is the current point
of time.
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1
Performance c

Time in hours
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=m
ax

)

0 50 100 150 200 250

0.6

0.8

1
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(1
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ax

)

A) 

B) 

Fig. 15. Performancec of a single DLU using a 70h time window.(A)
Overview over several days.(B) Zoomed in version of the same data during
the first few hours of learning.

The comfort/performancec for a period of time for a single
room is shown in figure 15. In figure 15Ac is shown for a
long period of time with a window sizek = 70h. Figure 15B
shows the first few ours of the same data in more detail. At
point t = 0 learning started with a manually constructed default
rulebase. At pointst > 0 in both figure 15A and 15B it can
be seen that the behavior of the system changed by learning
and thus the performance changed. Note in figure 15A that
performance drastically drops at aboutt > 230. This effect
is due to change of preferences of a room occupant, which
reduces performance for some time till the system adapts its
rulebase (as shown in the case oft = 150).

3) Learning – Benchmark:Evaluation of online learning
algorithms in non-stationary environments is difficult because
there are no test-and training sets which could be used as a
benchmark. It is not possible to construct such sets, because
the learning occurs as a result of interaction with the environ-
ment and not as a result of observing the environment.

We compared the performance of our online algorithm with
other algorithms using theIris dataset[26] that is commonly
used for such tasks. We used (randomly selected) 80% of
the iris dataset (which consists of 210 samples) for training
and 20% for testing. Castro et al. [19] used the same setting
for an offline-version of our algorithm and report a correct
classification rate of 93.3% (28

30). Using the same test and
training set published in [19], our algorithm achieves the cor-
rect classification rate of 93.3% (28

30). This result is expected,
because the online version should perform as well as the offline
version (in the best case) provided that the training data is not
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self-contradictory. If the training data is self-contradictory (and
sparse) the online version performs better.

4) Learning – Real Environment:Evaluating the perfor-
mance of a learning agent that is running in a multi-agent
system together with other learning agents is complicated by
the fact that the environment in which the agents act is non-
stationary, and that learning of all agents is online. Every agent
(including those in the environment, eg humans) all influence
the state of the environment.

We define a measurementR (eq 3), which we use for
evaluating the success of a single instance of the learning
agent:

R(t) =
∑|DN|

i= j,d j∈DN
d j

∑|DF |
i=1,di∈DF

di

(3)

whereR is the ratio of all non-forced decisions taken by the
system divided by all feedback signals (corrections) received
by the system. A non-forced decision is a decision for which
no correction was received within a reasonable period of
time, whereas a forced decision is a decision enforced by
feedback. A forced decision is not counted as an autonomous
(independent) decision of the system. The biggerR, the better
is the learning of the measured DLU. The measurec, by
contrast, measures user satisfaction.

The following experiment was used to evaluate the success
of the learning. Four rooms comprising 11 decision and
learning units (with IDs 2010,2011,2012,2030,2031,3000,2090
and 2091) were used for the experiment. The rooms were all
controlled for a period of 100 days. On day 1, all DLUs were
started with a small default ruleset. On day 100, the system
was shut down and the accumulated data were analyzed.

Only 9 of the 11 units were used for analysis. Two were
rejected because they showed unusually good performance
(R> 60), which might be due to errors or artifacts. Each unit
made on average 889 decisions (range 242...1585, σ = 600)
and received on average 124 punishments (range 51...287,
σ = 82). The average ratio was〈R〉= 7.2.

The accumulated number of forced (manual interactions)
and non-forced decisions for four different DLUs are shown
in figure 16. The increasing difference between forced and
non-forced decisions is the effect of learning. In the first few
days both the number of forced and non-forced decisions
are similar, but later on learning contributes and the number
of non-forced decisions increases relative to the number of
forced decisions (manual interactions). The larger number of
IBC decisions reflects the fact that the IBC is responding to
changes in the environment also in the absence of users. Figure
17 shows howR increased over time. This is because the
number of system decisions relative to the number of manual
interactions increases due to learning. The average absolute
number of decisions and manual interactions are depicted in
figure 18, which demonstrates that the absolute number of
system decisions increased while at the same time the absolute
number of forced decisions remained constant or decreased.

For every output an average of 1.24 feedback signals were
received and an average of 80 decisions taken every day.
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Fig. 16. Accumulated number of interventions and non-forced IBC decisions.
The increasing difference between the IBC decisions and user interventions
is due to learning.(A), (B), (C) and(D) are for learning and decision making
units 2010, 2011, 2099 and 3000 over a period of about 100 days.
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Fig. 17. Ratio of the number of decision taken by the system in relation to
the number of user interventions. A ratioR= 1 means that all decisions taken
by the system were wrong, ie the user reversed the system’s decision on every
occasion the building acted. A ratioR> 1 means that the system contributes.
(A), (B), (C) and(D) showR for the learning and decision making units 2010,
2011, 2099 and 3000 for a time period of about 100 days.

Thus, the average number of punishments per hour was1.24
24 =

0.0155, which demonstrates the sparseness of the data.
The results show that our algorithm succeeds in learning

the dynamics of the occupants of the IB. Transient decreases
in R confirm that the system is capable of recovering from
inconsistencies caused by conflicting data. However, the ratio
R sometimes decreases or stays constant for a long period
(Figure 17). These phases are due to false or invalid feed-
back (e.g. someone experiments with the system or makes
a mistake). The present system incorporates every sample
into the rulebase immediately, and so well established long-
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Fig. 18. Average absolute number of interventions and non-forced IBC
decisions in a 24h period using a 15 day window.(A), (B), (C) and (D) are
for learning and decision making units 2010, 2011, 2099 and 3000 over a
period of about 100 days.

term knowledge could be degraded or destroyed by a single
misleading sample. In these cases it may take some while for
the system to recover to its previous level of generalization. In
future versions of the algorithm we will introduce short-and
long-term knowledge ([27]) to address this stability-plasticity
dilemma [28].

VIII. C ONCLUSIONS

We have described the organization and operation of an IBC
that consists of multiple agents. The agents communicate with
one another by asynchronous, interest based, messaging. To
facilitate decision making and learning in realtime, each agent
only observes and takes decisions about a small part of the
environment.

Decisions are taken on the basis of a set of fuzzy rules which
represent the knowledge of the system. There are two groups
of rules: static and dynamic ones. Static rules establish fixed
boundaries for the system whereas dynamic rules are learned
and modified continually. Our learning algorithm constructs
the fuzzy rulebase online and unsupervised, from sparse data
that is acquired from the non-stationary environment.

We defined measures to asses the ability of the IBC to
satisfy its users. Using these we showed in a real building that
the IBC’s performance improved over time, in that relatively
more decisions are taken by the building than by the user.
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