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Abstract—Modern approaches to the architecture of living and  effective to program a sophisticated building manually, as this
working environments emphasize the dynamic reconfiguration of approach is too complex and static. The building thus needs
space and function to meet the needs, comfort and preferencesyq |aar jts own rules of behavior based on feedback it obtains

of its inhabitants. Although it is possible for a human operator f it ts. Eurth it should Hi Ilv adaot
to specify a configuration explicitly, the size, sophistication and '"0M IS occupants. Furthermore, it should continually adap

dynamic requirements of modemn buildings demands that they this knowledge.
have autonomous intelligence that could satisfy the needs of its We approach these challenges using a multi-agent control

inhabitants without human intervention. We describe a multi-  system that emphasizes local decision making. Each agent

agent framework for such intelligent building control that is ~ ontrols and learns about a small subregion of the whole state
deployed in a commercial building equipped with sensors and

effectors. Multiple agents control sub-parts of the environment space.
using fuzzy rules that link sensors and effectors. The agents
communicate with one another by asynchronous, interest based Il. DESCRIPTION OF THEPROBLEM

messaging. They implement a novel unsupervised online realtime - . .
learning algorithm that constructs a fuzzy rulebase derived from A building can be regarded as an intelligent agent that

very sparse data in a non-stationary environment. We have iS itself recursively composed of other agents. Thus, on a
developed methods for evaluating the performance of systemsconceptual level, intelligent buildings (IBs) are similar to

of this kind. Our results demonstrate that the framework and  other intelligent agents such as humans, animals and robots.
tﬂe Leqlrg_ing algorithm significantly improve the performance of i equivalence allows us to apply concepts and principles
the building. .
9 _ . _ S drawn from the broad literature of autonomous agents research
Index Terms—Intelligent buildings, ambient intelligence, (1) in the building task. However, IBs also have special
m“m.'a%e'l“ a”.:h'teft”re' IaSYnChronous messaging, online unsu- o o jirements that require novel solutions, because unlike mo-
ervised learning, fuzzy logic . . ) o
P g yiod bile agents that move through their environment, the building
completely contains its environment that is composed largely

|. INTRODUCTION of mobile agents (humans, robots, etc.) passing through itself.
Buildings are changing their nature from static structures of

bricks a_nd mortar to dynam|c_ work _and Ilvmg environmenty - oo ent
that actively support and assist their inhabitants. These new

buildings are expected to behave intelligently. That is, the ,------c- oo .
building is an active, autonomous, entity ([1], [2]) that pursues . | IBC I< ______________________________________
goals that relate to for example; energy consumption, security, 3

Fieldbus/ !

and the needs of users.
Building intelligence poses a number of interesting chal-g; Interface
lenges. Decisions must be made in near-realtime. The systeg! i
must have a way to interact with its users to obtain feedbaclg : t v y !
On the other hand, it should not intrude on the user. = | Plant i Structure | |
The user of a building should not have to interact directly@,: | _(Sensors/Effectors) e
with the building using special input devices: input shoulo%i R v

be derived from standard devices like switches and presen@:' | Environment

that describe which actions to take at which time because of .............. > — >
which conditions is complex and time consuming. In addition, ~ Informs Data flow
these rules have to be changed constantly, because preferences

and needs of users change. It is neither convenient nor C'agttl' Overview of our intelligent bundlng.Amu_ltl—agen@lntelllgent _bU|Id|ng
controller (IBC) senses and controls the building environment via sensors
Manuscript received September 2003; revised March 2004. This Wowd. effectors attached to a common fieldbus. The IBC_Iearns to control the
- ) ; } vironmental requirements of its users. The organizational structure of the
was supported by the Institute of Neuroinformatics, Zurich, and the N%ildin can be specified or learned
Engineering Research Center for Neuromorphic Engineering (ERC) at the 9 P '
California Institute of Technology.

The authors are with the Institute of Neuroinformatics at the Any kind of control and Iearning (figurE] 1) needs infor-
ETH/University Zurich (R.D., U.R.), the University of Applied Sciences

Rapperswil, Switzerland (J.J.), and the California Institute of Technolodyation about the .e.nVironment (ﬁg 2) that it is controlling.
(U.R). The less pre-specified the problem is the more must be learned
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IBC is difficult and ill-defined because most of its interactions
are with a real environment, which in practice includes many
non-deterministic components. It is desirable to have a learn-
ing procedure that uses a human-readable representation (eg
\ grammar, graph, decision tree, rules) that facilitates rapid
incorporation of domain specific knowledge before learning

Gateway . ' ;
begins rather than phenomenological methods like HMM's or
. . ~ Bayesian belief propagation networks.
Office 1 C. Control and Learning

Implementing and maintaining decision rules manually for
a dynamic environment such as an IB with its ever changing
requirements is not possible in practice because of the time
and effort required to continually re-write the rules. The ability
to learn continually by itself ([3], [4]) is a basic requirement
for an IB.

One of the major aspects of ambient intelligence is that such
intelligence isinvisible in the sense that it operates without
intruding on the user ([5]). Consequently an intelligent build-
ing doesnot have special mechanisms for interaction with its
users. Instead, it should acquire all its data, including feedback
for learning, from standard sensors (presence detectors, wall
switches etc) in a normal building. This requirement implies
that i) feedback for learning must be inferred from the state
acquired from sensor data (eg is it reward or punishment?)
and ii) that the feedback for learning is very sparse. Learning

SESENENENENE

Presence Bl Blnds ... Fieldbus must be one—shot (one single sample must be sufficient to learn
Light Outside —0 IP from). Because decisions and learning are expected to happen
Sensors in realtime, learning must be online. Learning (training) and

decision making happen simultaneously and so there can be

Fig. 2. The plant: A floor of a typical building structured into rooms. Allno distinction between a training and a production phase.
sensors and effectors are wired to a common fieldbus network. A gateway
allows the IBC to access the fieldbus network.

D. Consistency of Goals
. . . . An IB should assist the user to make him more comfortable
through interaction with the environment. However, less pr

o . - L E]. In this contextsatisfactionis defined to be minimization of
specification also makes learning more difficult and it is mo . L . o
.User interactions: The less a user needs to instruct the building

likely that the system will not be able to control its envi-

ronment successfully. This trade-off between pre-specificati ?19' press a switch) to perform some action the more the 1B
. Y- . pre-sp atisfies the user. This definition implies that the user knows
and learning of the structure of the environment needs to

Sw to interact with the building, which is one of the main
addressed. . )
U v | . the basi ¢ defi {ﬁeasons why our system only relies on input from standard
sually, learning occurs on the basis of a pre-defined, ... (see sectign TILC).

representation (eg number of variables, possible values Otl'he demands of the human occupants are not the only

varli?lbles), WT'(i.h m;pllehs t?att).lt.?e underltyltr)lg structur(z O.f tft1 emands that an IB must satisfy. The demands of non-human
problem IS static. such stabiiity cannot be assumed in e, ;o agents (eg delivery or cleaning robots) and global

case of IBs, which must be _able tq detect and mcorporaggnstraims such as energy consumption or security must be
structural changes at any point of time. Changes could f

le b d effect iabl flet as well. These many demands change over time and
example be new sensors and efiectors (new variables) 5y sometimes be contradictory because of changing usage
additional physical structures that make previously relat%

» A the building (new occupants) or changing preferences (non-
sensors unrelated (eg. a new wall). An additional question | g ( P ) ging p (

. . : dtationary environment).
what granularity the learning should have. Should it be on the y )

scale of the whole building, a single floor, a room or even a

single sensor/effector? I1l. A PPROACH
In the following sections we present a novel architecture

and learning procedure that is capable of coping with the

above requirements, and demonstrate the applicability of our

How can knowledge about the environment and the othapproach by evaluating data accumulated from an extensive

agents that inhabit it be represented? Analyzing such a systirst period in a real building.

B. Representation of Knowledge
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Our approach focuses on the building as a whole rat
than on a collection of independent rooms. This approa
is in contrast to others ([7],[8]), which focus on making
single room intelligent through the usage of special sens
and effectors like cameras or robotic arms. For example C
et al. [8] detect where people are located in the room (pers
tracking), what these people are doing (pointing) and inter
with people in the room by speech recognition (input) a

ControlAgent

SO0IAISS Wioyeld SV

speech synthesis (output). Our approach is different, beca BusAgent

we regard the building as an entity that provides inteligence—— | i .0
to theambiencewithout special devices or methods for inter R

action with the user. E Fieldbus !

Our system learns logic rather than statistics. Knowledge
represented by fuzzy rules that are used for decision makik;
(see [9]). The fuzzy rules used for decisions are constructed
by a learning process which continually modifies the set 6fg. 3. The intelligent building controller (IBC) consists of multiple types
rules according to feedback it receives from the environmegt.agents. The top layer is populated by many instances of the control agent;

In contrast to the approach by Hagras et al. [10], ol TS e contans the support sgents stbuton sgentand strchre
learning algorithm is completely unsupervised. All feedbagk the plant.
is acquired by means that the user does not notice, and by
actions the user would also execute if there were no learning

system present (e.g. switching on the light). highly dynamic: New agents get started and running ones get
stopped. Thus, a MAS communication facility does not know
IV. ARCHITECTURE in advance which constellation of entities will make use of its
A. Multi-Agent System services, or which types of messages will be transmitted.

Our IB is managed by a multi-agent system (MAS) in which
there is no central coordinator. We define an agent (following Agent x
[2]) to be a system that is situated in some environment, and
that is capable of autonomous action in this environment in

. . S . . . announce:A,B
order to meet its design objectiveBepending on its sophis- announce:C Agenty
tication, an agent may have one or several of the following

properties: reactivity, pro-activity (goal-directed behavior) and

social ability (interaction with other agents) ([2]). Agent z
Each agent is responsible for one specific task and offers Distribution /

this task as a service to other agents. Agents collaborate with Agent (DA) AnnouUnceA.C

mediated by asynchronous messages.

Our system consists of several different types of agents
(see figqr{p). The agents of the Ipwest layer are responsi )IeAgent a
for the interface to the IB’'s device bus (see sectjon| I
[B.7)). The middle layer consists of thgistributionAgentand
StructureAgen{see sectionm an@C) The intelligent':ig- 4. Asynchronous, interest-based messaging between agents, which acts

. - ’ . diator bet ts.
learning agents are located in the top level. These are varigug mecater beween agen's

instances ofcontrolAgent and are responsible for controlling

each other to achieve their various aims. The collaboration is /4

to distribute: type C

An agent that sends out a message of some type does not

the effectors. ; o . L
_ - know which other agent is interested in receiving its message
All agents operate within the ABLE (Agent Building andand does not wait for acknowledgment. This relationship

Learning Environment) framework ([11]). ABLE implement . o o
JAS ([12]), an architecture for agents which run concurreng%etween agents is managed bynassage distributomvhich is

on physically distributed systems. JAS implements the FI n independent agent running as part of the MAS. It collects

. e interests of all running agents and distributes messages
abstract agent architecture (FIPA Standard 00001, [13]). according to those interests (figiire 4). Agents announce their

o interests to the message distributor. An agent (agent a) wishing
B. Interagent Communication to send a message (type C) passes this task on to the message
A MAS platform usually provides messaging services (edjstributor, which distributes the message according to the
JAS, [12]). The requirements for an interagent communicati@ollected interests of all the other agents. Distribution is done
facility as we require it are different from those of tradiin parallel and asynchronously.
tional MOM (message oriented middleware). In contrast to This and the fact that agents look themselves up in a
traditional MOM, relationships between agents of a MAS amdirectory makes a MAS loosely coupled and robust.
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1) Topics: The DA (distribution agent) manages interests Since structural information varies widely between different
in terms of topics which represent a kind of message. Alboms, floors and buildings, it can not be directly encoded
register interestand unregister interesimessages relate to ainto the control system. Ideally, an adaptive system should
specific topic. The DA does not know the available topics inot depend on pre-specified knowledge at all — it should be
advance: The first time an interest in a topic is registereddapable of discovering its structure itself. For this purpose
automatically creates this topic. If no agents declare interestr system uses a generic structure description service called
in a topic anymore the distribution agent destroys the topicstructure agenfSA). All other agents request their structure

information from this agent. The structure is described by a
Control Agents recursive composite structure similar to the composite pattern

i
1

__________________ , 5 in object oriented software engineering ([14]). The description
i | ' consists of clusters which contain other clusters and elements.
0 DLU DLU bLU 4 17t Elements are either sensors, effectors, feedback devices or a
I | :‘J: combination of these. Figufe]11 shows a visualized example of
i_ | + ' such a definition and figufe 12 shows the formal definition of
""""""""""" * 1 asingle room. We choosediuster rather than a room as the
— ' basic unit of building structure, because rooms often contain
Structure Agent(SA) Distribution Agent(DA) =+ communities or regions of common interests that operate as
A A t a cluster. The clusters may even extend across the physical
Structure Info B ' boundaries of rooms.
Actions Bus Agent The definition of the structure can either be pre-specified
Define/ _ (static), dynamically discovered or a mixture thereof. For
. |infer . |...._|Sampling simplicity we use a pre-defined static structure in this paper.
v We describe our approach for dynamic structure discovery
Sensors/Effectors from data by correlation analysis in Trindler et al. [15].
Agents) [ ] Data — Data flow V. CONTROL
-~ -» Asynchronous messaging <— Synchronous messaging The core of an IBC are entities which are taking decisions

. . . . _ bout the state of all effectors of the building. Such a system
Fig. 5. Overview of interactions inside the MAS (upper part of figure, IBC | | I ilable d b he buildi d
and with its environment (Plant, which is not part of the MAS). Multiple onstantly evaluates all available data about the building an

instances of the control agent are running, each of which instantiates onecianges its outputs according to it. These decisions need to
multiple decision and learning units (DLUs, see figiife 6 and fiflufe 13). pe taken in near realtime.

Not only the communication between multiple agents g, ig DLU
managed in terms of topics, but also the external data. Extermal me------------ i
data describes all messages flowing between some agent h%t, ;Zgizﬁgar:ure —— Learnin
is part of the MAS and other entities (all physical sensoris & Time I 9
and effectors) which are not. This external data provides the«‘gi Humidity T
interface between the environment and the MAS. An agewt(_g: llluminance !
can effect the environment by sending a message to thiss ™~~~ "~ 777777 7 T
specific topic (effector). Messages sent to an external topic gré2: Light é&ﬁt&héé'; Goal evaluator g
automatically forwarded to the agent responsible for externgl2: Blind Switches ! 2
communication; In our case, thBus agent The bus agent | g Daylight : @
is notified by the distributor whenever topics that representS: Presence _
external data are created or destroyed . The bus agent respgn Ié'ﬁgr:'cgssggﬁs ! > Fuzzy Logic
by starting/stopping delivery of data updates on these topidsSl------—2c.— . Controller <
Figure[$ summarizes the interaction between the agents and (FLC)
the environment. ' Output

C. Generic Structure Information
A Decision and Learning Unit (DLU) consists of a fuzzy logic
An intelligent building controller (IBC) requires e>(tenswecontroller (FLC), a goal evaluator and a learner that generates rules from

knowledge of the structure of the building it controls. Thisparse events.

includes the relationships between sensors and effectors, as

well as the relation of these effectors and sensors to the stati©ur system takes decisions on the basis of a number
structure (e.g. where are they physically located).In additioof fuzzy logic rules (rulebase). A rulebase represents the
such structural information must also be capable of relatikmowledge of the outside world and specifies how to react
dynamic and static elements, for example when a mobile agémtinput signals. FLCs (fuzzy logic controllers), as shown

moves through the building interacting first with one roomin figure[§, constantly evaluate the inputs available and take
then with another. decisions about the outputs of the system according to the



IEEE T. ON SYSTEMS, MAN AND CYBERNETICS:A, SPECIAL ISSUE ON AMBIENT INTELLIGENCE, 2004, IN PRESS 5

fuzzy rulebase. The inputs available are, in our case, dividedThe rulebase consists of different types of rules: static rules
into two groups: The first group consists of inputs that relasnd dynamic rules. Static rules encode the fixed requirements
to the building as a whole. This are variables such as humidibf, the system that can not be changed, whereas dynamic rules
temperature, radiation, illumination and time. The inputs of thencode the preferences of users. Dynamic rules are generated
second group are variables that are available for every rooamutomatically on basis of feedback from the system by a
These group consists of presence information, daylight (inddearning process. In case of a conflict of interest between
light intensity), light status and blind status. The output of thetatic and dynamic rules the decision taken by static rules gets
decision making is binary, eg bring the blinds up/down and fweference. Only knowledge required by the IBC is encoded
switch on/off the light. within the rulebase. All reactive decisions made on lower
levels (fieldbus) are not part of the rulebase.

A. Localized Decision Making

The input and output of an IBC is high dimensional, yeP- Fuzzy Inferencing
decisions about particular lights and blinds are only influenced
by a very small subset of all available data in the systefizzy Temperature = new Fuzzy(-30.0 , 100.0) {
It is thus not practical (from a computational point of view) Sh?uld‘fr Zg—"eﬁcfld e Shiuld§r5’3g'8' 2400 L)i
to use one single FLC to decide the state of all outputs oﬁiiigli C—;Zm _ 223 Tizﬁglig.é,’m:o: 242032
the system. To Simp”fy the system from the pOim of VieWTriangle D:veryWarm = new Triangle(18.0, 33.0, 48.0);
of the design and architecture, computational complexity, anshoulder E_hot = new Shoulder(28.0, 100.0, R);
learning we use a FLC for every output in the building. We calli
a unit which takes decisions and learns about one particular
output a decision and learning uni(DLU, see figur{p). A Fig. 7. Formal definition of the fuzzy variable temperature (Celsius degrees)
DLU is capable of making decisions about it's output on th ARL Syntax whereas R is Right and L left.
basis of very few input signals and is thus fast and efficient.
This emphasizes thicalized decision makingpproach of
the overall architecture. Each instance of the control agen?(x)
instantiates one or multiple DLUs (figufé 5), depending on 1.0
the number of outputs the cluster has that is associated to the
control agent instance.

B. Multilayer Decision Making 05

Not all decisions are taken by agents. As many decisions as
possible are made directly on lower levels to reduce system
complexity and increase system stability. These purely reactive
decisions are made directly by the fieldbus network, which
binds for example all the connections between switches and
the respective actuators. These bindings ensure that when
a light-on switch is pressed, the appropriate light is turned
on immediately. This minimum control allows the system to
operate at a very basic level, even if the whole MAS fails. Thj Graphical definition of the fuzzy variable Temperature. It has

. . . - . . ig. 8.
IS avery important requirement, asa building is something ‘Pr‘gmbership functions labeledB,C, D andE as defined in figurf]7.
which human occupants rely heavily.

-30 -10 10 30 50 70 90
Temperature (Input)

The FLC as described above only uses fuzzy variables
C. Fuzzy Rulebase for computing its output (inferencing). All real-valued input

. : is first fuzzified with statically defined membership func-
The rulebase can either be engineered by a human expgéﬁa IS Tl . :
or be produced by a machine learning algorithm. We take t gns (Triangular, Shoulder and Trapezoidal [16]). Membership

later approach and use a fuzzy learning algorithm to lea petions (see figur] 7 and figJrp 8) are specified manually for

the rulebase automatically on basis of a punish/reward onlifEeTy type of input data. These .functlo.ns are pre-spemﬂed gr}d
e not learned. The membership functions incorporate implicit

learning algorithm. The rulebase consists of a number .

; ; ) omain knowledge.
simple if-then rules: Th d by the inf : . .
Ry : if xis A; andy is By thenzis C; e steps executed by the Inferencing engine are:
R, : if X is Ay andy is B, thenz is C, « fuzzification of input variables
R, : if xis A, andy is B, thenzis C, « rule evaluation

« aggregation of the rule outputs

whereR, is the label of the rulex andy are input variables ¢ defuzzification
and z is the output (control) variabled;, B; and C; are We use mamdani-style fuzzy inferencing, and the center of
linguistic variablesy, y andz are fuzzy variables. gravity approach for defuzzification [16]. ARL syntax (Able
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Rule Language, [17]) is used for the formal definition of
fuzzy variables and rules, because it offers a simple, powerfutz ¢
and Java-like syntax for the definition of fuzzy inferencing:‘é

processes. i

{

" Subsumes -

VI. LEARNING

Var, L(Y)

Intelligent buildings pose a very difficult learning problem— | :
because they require online learning from sparse data in a no@- e RN - ®
stationary environment. Most machine learning algorithms arg~ ' | | '

—>
unsuitable for such an environment because they can not cope NP PICN PPN IS
with non-stationary environments, online learning, or sparse a | b ™. T 4
data. Consequently, we developed our own learning algorithm X [Fuzzy Var, L(X)={a,b,c,d}]

specifically suited for such an environment. s
‘ Anchor points / samples (with different outputs)

A. Overview —* Change of coverage in state space

Our algorithm extends the inductive fuzzy learning algo-
rithm of Castro et al. [18], [19] and the work of Bonarini efFig. 9. The effect of operatorAmplify and Subsumess shown in two

[ i i ; i~dimensional fuzzy state space. Amplification adds additional conditions to
al. [20], [21], [22]. It uses principles similar to inductive Ioglcthe antecedents of a rule. A rule that subsumes another one is either more

pmg_ramming [23] to deduce logic from data_- and producggneral than the other rule (both rules have the same output) or the rule
maximal structure fuzzy rules that are continually adaptedntradicts the other one (contradictory output values).

(driven by feedback from the environment, see figlife 5).
The maximal structure property ensures that at any point of
time the state space is covered as completely as possities (See operatoramplify and amplifylsPossiblein the
(e.g. rules generalize well). The algorithm copes with a nof@llowing section).
stationary environment by not assuming that feedback fromNew samples are triggered by events in the environment
the environment is self-consistent. (change of state). The first action after fuzzification is to
Conceptually, the algorithm uses all available knowledgéecide whether such a sample is a reward or a punishment, by
about the environment (samples) as constraints to constrdetiding whether the output value associated with the input
a maximal structure rulebase. When a new sample becorveiies of the sample contradict the current generalization or
available this new knowledge is used to either strengtheéet. The operatorsubsumeand antecedentSubsunage used
or modify the existing set of rules. This principle is basetsee next section for definitions and fighie 9) to decide whether
on the premises of TMS (truth maintenance systems, [24Pne rule subsumes an other one (eg includes an other rule,
A TMS is a theoretical approach commonly used to reaswrhich then becomes irrelevant).
within the constraints set by all available knowledge about anBecause the environment is not stationary, it is not enough
environment [19]. to only add samples to the known facts. Old ones must also be
Online learning requires a constant upper bound on memagmoved, if they contradict new facts. This detection is done
usage to avoid the requirement of infinite memory in the limiy anchoring all generalized rules in the rulebase to known
of infinite running time. The bound means that it is not poslata points. When a rule is removed or modified in such a
sible to store all available samples about the environment.@ay that an anchor point is no longer part of the rule, then
the other hand some memory of past samples must be retaitiglassociated sample is removed from the list of known facts.
so that new knowledge can be incorporated. We achieve thil valid samples are incorporated such that their constraints
balance by storing only fuzzified samples. are met: There are no outliers.
Fuzzification of a sample involves the transformation of all
real valued input values into semantic fuzzy labels. To do Q. Definitions
the fuzzification uses the definitions of the fuzzy variables (see
sectior[ V-D). The number of all possible fuzzified samples is 1) More General: A rule R is more generathan ruleR;
low (this constitutes the upper bound). A fuzzified sample cdhit covers a bigger part of the state space tiign
be regarded as a very specific rule (only a single data point in2) SubsumeA rule R subsumesule R; if all antecedents
fuzzy state space). Every such data pqirih state space hasof R; are also antecedents & and if the output ofR and
an output valuey, assigned to it. R; are equal AntecedentSubsumig true if only the first of
All fuzzified samples together provide the constraints for tHbe conditions forsubsumesolds (but the outputs could be
generalization process that consists of two operations: i) Fuzkjferent).
samples are merged together into single rules if they do have3) Amplify: Amplify computes a set of rules which are
the same output value assigned to their respective data pomeseralizations of a rul&®. amplifylsPossibleis either true
in state space and ii) Fuzzy samples are enhanced (amplified)false for each of these generalizations. An amplification
until they are as general as possible. This is done by gradudlysingle rule) is possible if it does not contradict any facts
adding more and more conditions to the antecedents of ftfieedback from environment).
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C. Algorithm VIl. EVALUATION, EXPERIMENTS AND RESULTS

A. Experimental Setup

The following procedure is executed every time the system1) Building: The building for all experiments is a com-
receives new input (which can be a punishment or a rewargfercial office building located on the Irchel campus of the
Two sets are used: thmining set®r accumulates all fuzzified University of Zurich. One floor of this building, in which there
feedback received from the environment. Tdhefinitive rule are a number of offices and laboratories, is fully equipped with
set Rper contains the current set of rules (rulesefper S€nsors and effectors that can be accessed via a serial field
is the generalization of the constraints set by the feedbdews network (LON, see [25] for a discussion of LON and
accumulated in®r. A rule rr consists of a number of other competing field bus standards). Each room is equipped

antecedent&r; such thatrr = (X; is Er; and Xp is Era.... with one or several blind controllers, light controllers, light
and X, is Ern), whereX; are fuzzy variables anér; is a switches, blind switches and presence detectors. In addition to
subset of the label%(X;) of the fuzzy variablex;. this there are outside sensors for weather data (illumination,
Algorithm: radiation, humidity, temperature).

A typical room is equipped with 1-4 light switches, 1-2

0 Wait for new input. blind switches, 1-4 light controllers and 1-2 presence detectors

1 Transform the real-valued sample into an training set effigure[10).
try (fuzzification). This new training set entry becomes
rule rr. rr has a set of antecedent conditioBg; for IFE’O_r ____________________________
every fuzzy input variable. | :

2 Test for every rulep that is part of the definitive ruleset | |
(rp € RDEF) whether antecedentSubsume(rp) is trpe. : ——ry " MRoomaina —r :

If yes, assigrra =rp (ra € Roer) for therp for which | |
antecedentSubsunmg(rp) is true and go to step 3. : R I
If no, go to step 8. | :

3 Test if subsumefg,ry) is true. If yes, the input sample ! |
was a reward. Stop and go to step 0. If subsumegy) I B ¢ B 7 B o :
is false there is an invalid rule iRper (environment | —— ————— ~ ° - |
changed). At this point the output valyg of the sample : 7 I
is different from the output valugr of a rule inthe ——W™———"————>—>—>"~>"~>~>~>~~"~"—~—~—~————————
definitive ruleset (/5 # yr ). Go to step 4. Key ,

4 If all Eri C Eai (i — 0..N) and a minimum of one of Presence detector ﬂ: Blind switch _.. Fieldbus
these subsets is a real subg&(| < |Eq) the rule can Light controller Light switch — IP
be re-used. Go to step 5 in this case. If not, go to ste@ Blind controller gs;ss'gfs
6.

S Assignrm =ra. Reassign e\{(a_rEmi as following: Emj = Fig. 10.  Rooms from which data reported in this paper was obtained.
Ea — E7i (remove all conditionsEri C Eg from Egj).  Room number 4174, for example, has two light switches, two independent
Add rp, to the definitive ruleseRpge. light controllers (each of these controls a number of lights), one independent

6 Remover, from the set of definitive ruleftper and go  Jund, comiolr one blind suitch and one presence detector. The presence
to step 7.

7 Test if there are entries in the training s&r 2) Structure: Figure[I2 shows the definition of the struc-
which became invalid because of the removalre information for room 4184 as shown in figyrg 10. The
of ra. Remove all training set entriesTj for definition of the structure consists of clusters and elements
which  antecedentSubsule,ra) is true  but (figure[T1). Every element is part of a single cluster and every
antecedentSubsurtig,rm) is false. Go to step 8. cluster is part of an other cluster (recursively, except the root

8 Add the new sampler to the training setRr. Go to cluster). All decision making and learning takes place on the
step 9. basis of clusters. All elements of type effector within the same

9 Amplify rr and assign the resulting sorted set of antjuster are affected by all elements of type sensor in the same
plifications to Ra. ramp is the rule currently consideredc|yster.

(ramp € Ra ). Sort Ra such that the least general rule A single DLU manages each cluster that contains one or
r € Ra is the first element offy and the most general several effectors (eg effector=true in figlirg 12). Feedback for
rule r € Ra is the last element oRa. learning is acquired from elements of the cluster which are of
10 Assignramp to the least general rule ia for which  type feedbackieg elements with feedback=true in figlirg 12).
amyplifylsPossibletmp) has not been called yet. Go to  3) Agents: Every control agent has an associated cluster
step 11. that represents the root cluster for a particular room or parts
11 If amplifylsPossibletmp) is true, go to step 10. If false, of a room that it controls. For small rooms, one root cluster

add the lastamp for which amplifylsPossibléamp) Was  for each room exists; However, to efficiently control big
true to the set of definitive ruleRper. Go to step 0. rooms, we use several root-clusters that each control a subpart
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<cluster 1d="325" displayName="4184_" >
<cluster id="326" displayName="4184_" >
<cluster 1d="2007" displayName="4184_">
<element 1d="343" type="light"
effector="true" sensor="true" feedback="false"/>
<element i1d="345" type="lightSwitch"
effector="false" sensor="true" feedback="true"/>
</cluster>
<cluster 1d="2099" displayName="4184_">
<element id="344" type="light"
effector="true" sensor="true" feedback="false"/>
<element i1d="346" type="lightSwitch"
effector="false" sensor="true" feedback="true"/>
</cluster>
[...]
<element i1d="347" type="daylight"
effector="false" sensor="true" feedback="false"/>
<element 1d="348" type="presence"
effector="false" sensor="true" feedback="false"/>
</cluster>
<element 1id="9005" type="info" effector="false"
Fig. 11. Visualization of parts of the recursive structure of the building assensor="false" feedback="false">
defined formally in figurd 712. One instance of the control agent is running rientation=east
for every cluster that represents a room, as is clusters #325. Seeffigure 13 10§ 1 gpent>
details of the internal structure of the control agent for cluster #325.

Room 4174

subcluster
#2099

subcluster
#2007

subcluster
#2007

Room 4184, Cluster #325

Sensor/Effector

</cluster>

. . Fjg. 12.  Structure information for a single room, expressed in XML
(which operate independently). After start-up, the ContrQLntax. ID #325 represents the room 4184 and consists of element #9005
agent dynamically discovers the structure of its environmeatd subcluster #326. #326 consists of a number of subclusters and elements

everything that is part of its root cluster) and creates a numkgply some are shown). For every subcluster of #326 a decision and learning
E)f DI_)/US sguch thatpthere is one DLU fgr every subcluster ol*m (DLU) is instantiated as shown in figife]13
the control agent’s root cluster (see figlirg 13 for the case of
room number 4184). 2) Performance Evaluation:The performance for an IB
Every DLU is composed of a goal function evaluator, gould be measured in different contexts, eg energy, security,
learner and a fuzzy logic controller (FLC). The goal functiosomfort or a weighted sum thereof.
evaluator asserts the interests of the system itself (eg savingdere we evaluate performance in the context of user com-
energy, providing security) by providing feedback to théort, postponing the issues of energy consumption and security.
learner. The learner uses the feedback available, from the g0 define a measureomfortin the range 0.1, as the sum
function evaluation or user feedback, to modify the rulebassf. all periods of time during which no user interaction was
The FLC uses the rulebase constructed by the learner to takgessary compared to the total period of time. The highest
decisions. The sensors and effectors connected with a unit peeformance possible means that there was no user interaction
defined by the structure information (figyre] 12). required. A period with no user interaction is defined as either:
One instance of the control agent manages each clustef The period of time between two non-forced decisions, or
that represents a room and thascontrol agent instances . The period of time between a forced decision (because of
are running ifn is the number of rooms of the building. In  a punishment feedback signal) and a non-forced decision.
addition a single instance of every of the following agents is | periods of time between non-forced and forced decisions
running: distribution agent, bus agent, structure agent. Thatdge yser was not satisfied and they are thus not counted.
the number of agents in a running systemis 3. Because the exact point of time at which the system state did
4) ImplementationRunning the system requires 3 standargot meet the needs of the user can not be defined exactly, the

PC servers. One of these servers is running the gatevghtire period is taken as the worst case for which conditions
between, in our case, the LON network and the higher lev@ly not meet the wishes of the user.

logic is running on the other two servers. These servers run the

whole MAS. For stability and scalability reasons we choose to 1 /I ||

distribute the MAS over two physically different servers. One c= T ( Zi Pni + z pFJ) @

of the MAS servers is running the lower-level base services = 1=

(messaging, bus abstraction) and the other one is running thé € [0...1]. Equatior] 1 is the definition of performanqm;

higher level decision making and learning. Py is the set of all periods that start and end with a non-forced

decision, whereagr; € Pr is the set of all periods that start

with a forced decision and end with a non-forced decision. A

period of time is defined as the number of seconds between
1) Input Data: Examples of raw input data sequences atevo decisions gni,pri and T are in seconds).

shown in figure[ I4. See figulg 6 for the input and output To calculate the performance of a number of DLUs (for

signals used. example a room or a floor) we take a weighted sum of all

B. Analysis of Results
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ControlAgent (room 4184, root cluster #325) we do not use the total time elapsed for evaluating the long-
i DLU DLU DLU ; term performance, but rather use a running window within
i for cluster for cluster for cluster :  whichcis calculated. A typical window size is= 70 hours.
#2007 #2008 #2099 That is, we apply equatidr] 1 considering only periods of time
S e e i T(pni) >t—kor T(prj) >t—k wheret is the current point
| : ! of time.
i Learner i Learner i Learner
I""f"_ I""f"_ I""f"_ A) Performance ¢, 70h Window
[ Bt [ Bt [ Bt 1 [ ' ' a
. Goal \ Goal \ Goal . !_J( \"—’]W
i eval i eval i eval %
AR ISR AR £0.8
"""" [ B [ B ‘ﬂ
: : : Y
' FLC ' FLC ' FLC 0.6 1
1 S | R S | R ' : 0 50 100 150 200 250
B) Performance ¢
Fig. 13. A cluster of decision and learning units (DLUs) within the contrc i p———
agent. FLC: Fuzzy Logic Controller, Goal eval: Goal evaluator, DLU: Decisio .
and learning unit. & /
£0.8r 1
Il
A, External illumination = !
10 0.6l .
0 5 10 15 20
§ 102 | Time in hours
Fig. 15. Performance of a single DLU using a 70h time windowA)
Overview over several day$B) Zoomed in version of the same data during
100 : ! ! ! the first few hours of learning.
2 4 6 8 10 12
B) Presence signal raw The comfort/performance for a period of time for a single
2100 1 room is shown in figur¢ 15. In figufe 158 is shown for a
a long period of time with a window sizk = 70h. Figure[15B
> shows the first few ours of the same data in more detail. At
% 507 1 pointt =0 learning started with a manually constructed default
8 rulebase. At point$ > 0 in both figure IpA angl 15B it can
o ‘ be seen that the behavior of the system changed by learning
85 1 1.5 and thus the performance changed. Note in figuie 15A that
Time in hours performance drastically drops at abdut- 230. This effect

. . L is due to change of preferences of a room occupant, which
Fig. 14. Examples of raw data inp@#) External illumination (real valued), . . .
(B) presence (binary) is a series of binary pulses out of which the preser‘&guces performance for some time till the system adapts its
value is computed by a low-pass frequency filter. rulebase (as shown in the casetef 150).

3) Learning — BenchmarkEvaluation of online learning
algorithms in non-stationary environments is difficult because
comfort measurements and divide it by the total duration ghere are no test-and training sets which could be used as a
the measurement period (Ef 2). benchmark. It is not possible to construct such sets, because
the learning occurs as a result of interaction with the environ-
(2) ment and not as a result of observing the environment.
2i T We compared the performance of our online algorithm with
i is a specific DLU,T; is the time since the start of learningother algorithms using thiis dataset[26] that is commonly
of DLU i andc¢; is the performance of DLU as calculated used for such tasks. We used (randomly selected) 80% of
with eq.[]. the iris dataset (which consists of 210 samples) for training
Comfort is evaluated in relation to the total time elapseahd 20% for testing. Castro et al. [19] used the same setting
since starting the experiment. This measure is useful in evids an offline-version of our algorithm and report a correct
uating the short term performance of the system; but not tkassification rate of 93.3%%3). Using the same test and
long term performance, because past comfort looses relevatraging set published in [19], our algorithm achieves the cor-
to the user after a relatively short period of time. As the systeract classification rate of 93.3‘%%%). This result is expected,
continually adapts itself to new conditions performance mdecause the online version should perform as well as the offline
drop in regard to the past. To measure this fading relevanegersion (in the best case) provided that the training data is not

YiTi*Ci

Ciot =
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self-contradictory. If the training data is self-contradictory (an A) (C#2010) B) (C#2011)
sparse) the online version performs better. 2000[— Decisions 1500
4) Learning — Real EnvironmentEvaluating the perfor- 21500( - - - Interactions | 1000
mance of a learning agent that is running in a multi—age:%1
system together with other learning agents is complicated é 000
the fact that the environment in which the agents act is nos 500 500
stationary, and that learning of all agents is online. Every age | .~ __ - -- - e
(including those in the environment, eg humans) all influent 01 100 01 100
the state of the environment. ) (C#2099) D) (C#3000)
We define a measuremem (eq[3), which we use for 1500 300
evaluating the success of a single instance of the learni,
agent: 81 000 200
Kz
(8]
DN 8 500 100
Yij.djey di
R(t): i=j,djeDn 3) * -
5108 o 0 ===
i=1,dieDg ™1 1 1 100

Days
whereR is the ratio of all non-forced decisions taken by the ‘ _ N

system divided by all feedback signals (corrections) receivEl§- 16. Accumulated number of interventions and non-forced IBC decisions.

e . .. . The increasing difference between the IBC decisions and user interventions

by the SySt.em- A non-for.ced de_uspn is a decision for Wh'q due to learning(A), (B), (C) and(D) are for learning and decision making

no correction was received within a reasonable period afits 2010, 2011, 2099 and 3000 over a period of about 100 days.

time, whereas a forced decision is a decision enforced by

feedback. A forced decision is not counted as an autonomc a) B)

(independent) decision of the system. The biggethe better 15

is the learning of the measured DLU. The measoreby

contrast, measures user satisfaction.

8
6
The following experiment was used to evaluate the succe g 4
2
0

r #2010
o

of the learning. Four rooms comprising 11 decision ar .2
learning units (with IDs 2010,2011,2012,2030,2031,3000,20' &
and 2091) were used for the experiment. The rooms were
controlled for a period of 100 days. On day 1, all DLUs wer
started with a small default ruleset. On day 100, the syste céo
was shut down and the accumulated data were analyzed. o2
Only 9 of the 11 units were used for analysis. Two werg
rejected because they showed unusually good performai®®
(R> 60), which might be due to errors or artifacts. Each un%m
made on average 889 decisions (range.2#285,0 = 600) %
and received on average 124 punishments (range28Z, <
o = 82). The average ratio waR) = 7.2. 01
The accumulated number of forced (manual interactions)
and non-forced decisions for four different DLUs are showng. 17. Ratio of the number of decision taken by the system in relation to
in fiure [18. The increasing diference betmee f0r0ed A e o e sor vt o s st o ot
non-forced decisions is the effect of learning. In the flrSF f,e ccasior}: the building actga. A rat®> 1 means that thye system contributes. Y
days both the number of forced and non-forced decisiops, (B), (C) and(D) showR for the learning and decision making units 2010,
are similar, but later on learning contributes and the numb&}11, 2099 and 3000 for a time period of about 100 days.
of non-forced decisions increases relative to the number of
forced decisions (manual interactions). The larger number of
IBC decisions reflects the fact that the IBC is responding fthus, the average number of punishments per hourlﬁé&
changes in the environment also in the absence of users. FigufEl55, which demonstrates the sparseness of the data.
[I7 shows howR increased over time. This is because the The results show that our algorithm succeeds in learning
number of system decisions relative to the number of manuhé dynamics of the occupants of the IB. Transient decreases
interactions increases due to learning. The average absointdR confirm that the system is capable of recovering from
number of decisions and manual interactions are depictedinieonsistencies caused by conflicting data. However, the ratio
figure [I8, which demonstrates that the absolute number Rfsometimes decreases or stays constant for a long period
system decisions increased while at the same time the abso(#igure[17). These phases are due to false or invalid feed-
number of forced decisions remained constant or decreasdsack (e.g. someone experiments with the system or makes
For every output an average of24 feedback signals werea mistake). The present system incorporates every sample
received and an average of 80 decisions taken every diango the rulebase immediately, and so well established long-

a

Ratio for #2011

(=]
—_

100 100

o
-

IS

N

Ratio for #3000

(=}

—_

Days 100 Days 100
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A) (C#2010) B) (C#2011)
40 40 i
— Decisions 'ng
230 230t | - - - Interactions
R o
§ 20 520
° S [
# 10 #10
% 100 [2]
C) (C#2099) D)
40 15 3]
[%2] (2]
5% 510 4
320 3
@ @
© T 5[~
# 10 + Soveal L . [5]
e = P =TT e =~ 6
01 100 01 100 2
Days Days 7]
Fig. 18. Average absolute number of interventions and non-forced IBC

decisions in a 24h period using a 15 day wind@d), (B), (C) and (D) are [8]
for learning and decision making units 2010, 2011, 2099 and 3000 over a
period of about 100 days.

El

term knowledge could be degraded or destroyed by a single
misleading sample. In these cases it may take some while for
the system to recover to its previous level of generalization. I
future versions of the algorithm we will introduce short-and
long-term knowledge ([27]) to address this stability-plasticity
dilemma [28]. [11]

VIII. CONCLUSIONS

We have described the organization and operation of an B!
that consists of multiple agents. The agents communicate W[Iig]

11

of Applied Sciences Rapperswil, Switzerland) for implement-

parts of the software.
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