
diploma thesis

Adaptive Building Intelligence
A multi-Agent approach

Ueli Rutishauser Alain Schäfer
<urut@easc.ch> <alani@easc.ch>

Advisors
Prof. Dr. Rodney Douglas, Institute of Neuroinformatics, ETH/University Zurich

Prof. Dr. Josef Joller, University of Applied Sciences Rapperswil

A cooperation between

Computer Science Department Institute of Neuroinformatics

University of Applied Science Rapperswil University and ETH Zurich

Oberseestrasse Winterthurstrasse 190

8640 Rapperswil, Switzerland 8057 Zurich, Switzerland

December 10, 2002

Typeset by LATEX

Abstract

This diploma thesis explores methods for making a building intelligent. A building is perceived as be-
ing intelligent if it is able to learn from experience. We demonstrate a advanced multi-agent architecture
for controlling a building. The multi-agent system is connected to the sensors and effectors via a dedicated
fieldbus network (LonWorks). Based on this data the system takes decisions about the actions it wants to
execute. Decisions are taken by a fuzzy inferencing engine on basis of a block of fuzzy rules. The multi-agent
system utilizes a generic structure information system to abstract the complicated relationships between
sensors, effectors and static structures (like rooms).

We then extend this work with an anytime learning algorithm that dynamically learns the rulebase used
by the fuzzy inferencing process. The reinforcement signals for the learning algorithm are automatically
generated from the input data acquired from the sensors of the building. The learning process is completely
unsupervised. There are no special methods for the user to provide feedback.

We furthermore demonstrate the feasibility of the approach by deploying the system in a real-world envi-
ronment consisting of a number of different rooms.

An other issue issue for making a building intelligent is personalization. We demonstrate with a prototype
what is already possible and what not using the technologies available as of today. Our prototype uses the
Bluetooth technology to track and identify individual persons moving freely in a building.

Further documentation, the API reference documentation
and the sourcecode can be found at: http://www.easc.ch/abi.

ii

http://www.easc.ch/abi

Contents

Preface xiii

I Introduction 1

1 Introduction 3

1.1 Overview . 3

1.2 Content . 4

1.3 Related work . 4

2 Motivation 6

II Architecture 8

3 System Architecture 10

3.1 Basic principles . 10

3.2 Connectivity . 10

3.3 Generic Structure information . 11

4 Software Architecture 13

4.1 Overview . 13

4.2 Agents . 13

4.3 Implementation requirements . 14

5 Multi-agent system 15

5.1 Overview . 15

5.2 Agents . 15

5.3 FIPA and JAS . 16

5.3.1 Overview . 16

iii

CONTENTS CONTENTS

5.3.2 The JAS platform . 17

5.3.3 Agent Naming Service . 18

5.3.4 Agent Directory Service . 18

5.3.5 Message Transport System . 18

5.3.6 Lifecycle Service . 18

5.3.7 Usage scenarios . 19

5.3.8 Package . 19

5.4 Messaging . 19

5.4.1 Interest based, asynchronous messaging . 19

5.4.2 Topics . 20

5.4.3 Messages . 20

III Design and Implementation 21

6 Design and Implementation 23

6.1 Programming language and runtime environment . 23

6.2 MAS framework . 23

6.3 3rd party frameworks . 23

6.4 Packages . 24

7 Simulation 25

7.1 Motivation . 25

7.2 Design and Implementation . 25

8 Learning a maximal structure fuzzy rule base with an anytime learning algorithm 27

8.1 Overview . 27

8.1.1 Features of the algorithm . 27

8.1.2 Related Work . 27

8.2 Notation . 28

8.3 The algorithm . 29

8.3.1 Definitions . 29

8.3.2 Operators . 29

8.3.3 Algorithm . 30

8.4 Motivation . 30

8.5 Examples . 31

iv

CONTENTS CONTENTS

8.6 Implementation . 31

9 Anytime learning and fuzzy inferencing applied to intelligent buildings 36

9.1 Overview . 36

9.2 Model and learning units . 36

9.3 Decision Making . 37

9.4 Design of membership functions . 38

9.4.1 Radiation . 39

9.4.2 Temperature . 39

9.4.3 Illumination . 39

9.4.4 Daytime . 39

9.5 Structure of rulebase . 40

9.5.1 Fuzzy OR operator . 40

9.5.2 OR to AND conversion . 41

9.6 Implementation . 41

9.6.1 Dynamic creation of rules . 42

9.7 Related work . 42

10 Agents 45

10.1 Messaging . 45

10.2 Bus Agent . 47

10.2.1 Functionality . 47

10.2.2 Messages . 47

10.2.3 Implementation . 47

10.3 Structure Agent . 49

10.3.1 Functionality . 49

10.3.2 Messages . 49

10.3.3 Implementation . 49

10.4 Simulator Agents . 51

10.4.1 BusSim - Simulation of BusAgent . 51

10.4.2 Simulator Agent - Control of simulation time . 54

10.5 Control Agent . 56

10.5.1 Functionality . 56

10.5.2 Messages . 56

v

CONTENTS CONTENTS

10.5.3 Implementation . 56

10.6 Distribution Agent . 61

10.6.1 Functionality . 61

10.6.2 Messages . 61

10.6.3 Implementation . 62

10.7 BuildingViewer Agent . 63

10.7.1 Functionality . 63

10.7.2 Messages . 64

10.7.3 Implementation . 64

10.8 Person Locator Agent . 66

10.8.1 Functionality . 66

10.8.2 Messages . 66

10.8.3 Implementation . 66

10.9 Virtual Person Agent . 67

10.9.1 Functionality . 67

10.9.2 Messages . 67

10.9.3 Implementation . 67

11 Personalization 68

11.1 Person Tracking – Bluetooth . 68

11.1.1 Mobile Device Program . 68

11.1.2 Server side . 69

12 System Configuration 71

12.1 Envrionment Variables . 71

12.2 Config Files . 71

IV Results and future work 73

13 Results 75

13.1 Evaluation . 75

13.2 Architecture . 75

13.2.1 Messaging . 76

13.2.2 Simulation . 76

13.2.3 JAS . 77

vi

CONTENTS CONTENTS

13.3 Learning and inferencing . 77

13.4 Personalization . 78

14 Future 79

14.1 Learning and inferencing . 79

14.2 Structure information . 79

14.3 Personalization . 80

V Appendix, Glossary and Bibliography 81

A Fuzzy Logic Primer 83

A.1 Fuzzy Logic primer . 83

A.1.1 Definitions . 83

A.1.2 Membership functions . 83

A.1.3 Fuzzy inferencing . 85

A.1.4 Fuzzy logic controllers . 85

A.1.5 Fuzzification process . 86

A.1.6 Defuzzification process . 86

A.1.7 Rule based inferencing . 87

B Agent Building and Learning Environment 89

B.1 Agents . 89

B.1.1 JAS . 89

B.2 ARL . 90

B.2.1 Structure of ARL . 90

B.3 Fuzzy Inferencing . 91

C Configuration 93

C.1 BusSim Schema File . 93

C.2 Virtual Person schema file and example . 94

Glossary 97

vii

List of Figures

3.1 A floor of a building structured into rooms . 10

3.2 System architecture . 11

3.3 Variable Mapping in BusAgent . 12

3.4 One floor of an imaginative building . 12

4.1 Different types of agents used . 13

5.1 FIPA abstract architecture specification and it’s relation to JAS (from the FIPA specification) 16

5.2 JAS Platform services as specified in JSR-87 (except for lifecycle service) 17

5.3 Agents running inside the JAS framework . 17

5.4 FIPA Agent directory (Register) . 18

5.5 FIPA Agent directory (Query) . 18

5.6 Agents declare there interests to the distribution agent . 20

7.1 The Simulation Subsystem . 26

8.1 UML activity diagram for the learning algorithm. All numbers refer to the respective steps
(0 to 9) of the description of the algorithm. 33

8.2 The state space covered by the rule (({x, y, z}, {h, j}), yj2) . 34

8.3 The state space covered by the rule (({y, z}, {h, j}), yj2) . 34

8.4 UML class diagram of the learning algorithm implementation 35

9.1 Relationship between Model and Learning Unit . 37

9.2 Structure of a single room (example) . 37

9.3 An FLC and it’s inputs and outputs . 38

9.4 Membership function of radiation . 39

9.5 Graphical version of the membership function radiation . 39

9.6 Membership function of Temperature . 39

9.7 Graphical version of the membership function temperature 40

viii

LIST OF FIGURES LIST OF FIGURES

9.8 Membership function of illumination . 40

9.9 Graphical version of the membership function illumination . 41

9.10 Membership function of DayTime . 41

9.11 Graphical version of the membership function daytime . 42

9.12 The fuzzy set normal of the variable Daylightindoor . 42

9.13 Fuzzy hedge not applied to the fuzzy set normal of the variable Daylightindoor 43

9.14 Fuzzy hedges not positively slightly applied to the fuzzy set normal of the variable Daylightindoor 43

9.15 UML class diagram of the package aha.rules . 44

10.1 UML class diagram of the bus agent . 48

10.2 UML class diagram of the structure agent . 50

10.3 Relationship between Variables/Connections/Mappings . 51

10.4 UML class diagram of the simulation agents (simulation,bussim, artificial persons) 55

10.5 UML class diagram of the control agent (Agent itself, part 1) 58

10.6 UML class diagram of the control agent (Elements, part 2) 59

10.7 UML class diagram of the control agent (Learning, part 3) . 60

10.8 UML class diagram of the distribution agent . 62

10.9 Simulation of BuildingViewer Agent . 63

10.10UML class diagram of the BuildingView agent . 65

10.11UML class diagram of the locator agent . 66

10.12UML class diagram of the locator agent . 67

11.1 Architecture of our Bluetooth prototype . 69

11.2 Screenshot of main window . 69

11.3 Screenshot of access point choice . 70

A.1 Triangular membership function . 84

A.2 Trapezoidal membership function . 84

A.3 Sigmoidal membership function . 84

A.4 Gauss distribution as a membership function . 85

A.5 Basic layout of a non-fuzzy controller . 85

A.6 Basic layout of a fuzzy controller . 86

A.7 Fuzzification Process . 86

A.8 Defuzzification with center-of-area/gravity . 87

ix

LIST OF FIGURES LIST OF FIGURES

B.1 ARL structure . 90

B.2 ARL definition of a fuzzy variable . 90

B.3 Visualization of the membership function DayTime . 91

B.4 ARL definition of a categorical variable . 91

B.5 ARL definition of the input and output variables . 92

B.6 ARL rules . 92

x

Listings

10.1 example config structure agent . 49

10.2 Extract a config file for a simulation . 52

10.3 example config for a variable filter . 52

10.4 example config for an update action . 53

10.5 example reference to timed events . 53

10.6 example for the list of timed events . 53

C.1 Grammar for describing a simulated sensor network . 93

C.2 Grammar for virtual persons . 94

C.3 Example of a config file for virtual persons . 95

C.4 Grammar for id to variable name mapping, BusAgent . 96

xi

List of Tables

10.1 Table of all messages . 46

xii

Preface

By Prof. Dr. Joseph M. Joller, University of Applied Sciences Rapperswil, Switzerland

After the “Semesterarbeit”, this diploma thesis is a second step towards more adaptive, intelligent and
multi-agent based buildings. A quick look at the literature shows, how advanced the concepts presented in
the diploma thesis are and this should help us, to position the work relative to similar projects (Essex, MIT,
. . .).

The project gave us several new views on old problems:

• The question of learning (online, real-time versus history / database based [more information mining]);

• The question of personal identification: how can we locate a person using standard devices (e.g. using
Bluetooth) and / or how can this information be used to navigate a person to a target point.

• The question of identification of structures: how can devices find out, to which structure they belong,
which structure they define (in simpler terms: what makes up a room, a floor, a building, from an
abstract point of view)?

The diploma contains contributions to the solution of all three of the above questions.

Typically a software engineer would try to find an answer to the third questions by using “biology inspired”
informatics:

• how can a cell know, in which environment it is living and growing?
Software engineering suggests a strong cohesion und weak coupling of objects. Each object knows, how
it can be combined with other objects, what is allowed and what is not.
Biologists would probably give a simple answer: the genes know, what combinations proved to be
stable and which combinations survived.

• A different answer would we get, if we asked a neuroscientist. He would (probably) argue about infor-
mation processing in the brain and come up with a solution, similar to the one that was implemented
in the diploma thesis (structure agent).

This very simple example gives some hints, that future work on adaptive multi-agent systems may have
significant impacts an the way we are structuring complex software systems.

I look forward to see more results. . .

xiii

CHAPTER 0. PREFACE

xiv

Part I

Introduction

1

Chapter 1

Introduction

1.1 Overview

In this paper we describe our approach for making a building intelligent. To achieve this we use a learning
algorithm specifically developed for this purpose. Our approach is to learn maximal structure fuzzy rules
from data acquired from sensors and to adapt this rules driven by a punishment and reward scheme. We
prove that our approach is suitable by deploying it within a whole floor of a commercial office building.

We regard learning from non-explicit feedback as the most important issue in making a building intelligent.
An intelligent building, from a computer science point of view, should take decisions about the building
such that the user of the building doesn’t have to make (and execute) them himself. The most important
feature of such a learning algorithm is that it is non-supervised. A user of a building shouldn’t notice that
the building he is in is actually intelligent which means that there are no special input devices with which
the system driving the building can interact with the user. The only tools for interaction are the sensors and
effectors present in an ordinary building: presence detectors, weather sensors, switches, lights and blinds.
All feedback for the learning algorithm needs to be taken from these sensors.

Users and the preferences of these users constantly change. The consequence of this is that an intelligent
building has to learn continually (anytime learning). Something learnt about the behavior of some user
may be valid at the present time but it may become invalid in the future because the preferences of the
user changed. There is no training phase and production phase in such a system. The system has to learn
anytime in it’s lifetime.

Our view of an intelligent building is very similar to our view of robots. We regard an intelligent building
as a robot. The only difference between an ordinary robot and an intelligent building is that real people
are present inside an intelligent building. This creates all sorts of new challenges. Within the context of
an intelligent building we deal with real environments with real people that are used to do real work. An
intelligent building is an environment where there can be no compromises regarding stability and efficiency.
An autonomous system driving an intelligent building needs to take all decisions in near-realtime because
a noticeable delay between sensor data changing and actions happening won’t be accepted by a user of a
building in the long-term.

We tackle this challenges by using a layered multi-agent system. Decisions are taken by many different
agents. Every agent is responsible for a small subset of the whole state space. This emphasizes localized
decision making which makes the system much faster. The same principle is applied to the learning. There
are different so called learning units. Each of these learning units learn about a small subset of the whole
state space. This guarantees much faster convergence of the learning.

To judge the quality of such a system requires running the system for a considerable long period of time
within a real building. Because this would slow down the development process of such a system considerably
we developed a simulator of a building which simulates the behavior of a building and it’s users. This

3

1.2. CONTENT CHAPTER 1. INTRODUCTION

includes the influence of external factors like weather that constantly change. This simulator enables us to
test a specific system and it’s parameters much faster because it is capable of running many times faster
than real time.

1.2 Content

This document is structured into the five parts Introduction (part I), Architecture (part II), Design and
Implementation (part III), Results (part IV) and Appendix, Glossary and Bibliography (part V).

The first part, Introduction (part I), gives a general introduction to the topic. It consists of the chapters
Motivation (2) and Introduction (1). Also part of the introduction are an extensive list of papers that report
about related work.

Architecture, which consists of the chapters system architecture (3), software architecture (4) and multi
agent system (5), gives a detailed introduction to the underlying architectural principles used within ABI.
Especially important to mention here is the introduction into the multi-agent architecture in chapter 5. This
chapter describes the relationship between the multi-agent and the JAS/FIPA architecture specifications. A
very important architectural decision is mentioned in section section 3.3. This section gives an explanation
of how we coped with the difficult problem of managing relationships between static and dynamic elements
of a structure (eg a building). The same principle is also used to manage the sensor/effector relationships.

Details about the implementation of the system are given in part III. Design decisions made for the overall
system are justified in chapter 6 and design decisions regarding the simulation are justified in chapter 7.
The two chapters 8 and 9 explain the core of the adaptive system, the learning algorithm and how it is
used to make the system capable of adapt itself to the needs of the users. Within chapter 10 there is a
separate section for every agent that is part of ABI. For every agent there is a detailed specification of it’s
functionality, which messages it sends and processes and a explanation of the classes and objects used for
implementing it.

Section 11 looks at the issue of personalization and means of how persons can be identified and tracked
inside a building.

Chapters 13 and 14 evaluate what has been achieved and what not within the context of the project and
what could be done in the future. It also lists potential topics for future research projects.

For readers not familiar with fuzzy logic there is a fuzzy logic primer in Appendix A and for readers not
familiar with the ABLE framework and ARL there is a introduction in appendix B.

1.3 Related work

The basic ideas and principles of Adaptive Building Intelligence (ABI) were first developed during the
projects ADA – An artificial organism ([EBB+02]) and Adaptive Home Automation (AHA) ([RS02]), both
of which were conducted at the Institute of Neuroinformatics in Zurich,Switzerland (which belongs to the
ETH). Adaptive Building Intelligence is built on top of the architecture developed of the preceding Adaptive
Home Automation (AHA) project. Whereas the focus of AHA was on establishing a multi-agent based
infrastructure to make decisions on basis of a static fuzzy logic rulebase, the primary focus of Adaptive
Building Intelligence is to make the building adaptive through online learning.

There is a variety of relevant projects being conducted at other places. [Coe97] and [Coe98] describe ap-
proaches where the focus is to make a single room intelligent through the usage of special sensors and effectors
like cameras or robotic arms. In [Coe98] the distinct focus is on how to make a single room intelligent by
detecting where people are located in the room (person tracking), by detecting what this people are doing
(pointing) and by interact with people in the room over speech recognition (input) and speech synthesis
(output). In [Coe97] the authors show how they use different agents to make a single room intelligent by
using the same principles as shown in [Coe98]. [Bro97] gives a good introduction to the MIT Intelligent room

4

CHAPTER 1. INTRODUCTION 1.3. RELATED WORK

project in which’s context [Coe97] and [Coe98] evolved. In general one can say that the MIT Intelligent room
project’s focus is on the human-machine-interface rather than learning the behavior of the people itself.

[HCCC02] shows a approach that is perhaps most similar to our work of all papers known to the authors
of this paper. They describe a system where different sensors of a room are connected via a sensor network
(LonWorks) to a single embedded agent that is located physically in a room. This agent uses the information
acquired to learn fuzzy logic rules with a genetic algorithm learning paradigm. There learning procedure
requires explicit feedback of the user. Related to [HCCC02] is [VC00] where the authors describe an archi-
tecture consisting of embedded agents that is used to build intelligent systems. Here our work is different:
We use a learning algorithm which doesn’t require any explicit feedback by the users at all. All feedback is
acquired by means that the user doesn’t notice or by actions the user would also execute if there were no
learning system present (eg switching on the light).

An other interesting perspective is presented in “Artificial Decision Making Under Uncertainty in Intelligent
Buildings” ([BDY99]). This paper focuses on the decision making under uncertainty itself. It is partly
very similar to our project as it is also using a multi agent system (MAS) architecture and LonWorks for
connecting to sensors and actors.

Ada ([EBB+02]), a project done at the Neuroinformatics Institute of the Swiss Federal Institute of Technology
and the University of Zurich, regards a room as a artificial organism. Ada has an emotional state just like
every other organism. She expresses here internal states to visitors and interacts with visitors. Input sensors
are acoustic/speech recognition, vision processing and touch (floor). The floor of Ada is divided into a large
number of tiles. Every of these tiles is a autonomous system that provides input to the overall system
and gives feedback from the system. Every of these tiles measures the weight of the person standing on it.
These weights are important inputs to the system. Furthermore every of these tiles can emit light of an
arbitrary color. Output sensors are video, audio/voice and light (light fingers and tiles). The goal of Ada is
to dynamically change its overall functionality and quality through an active dialog with visitors.

5

Chapter 2

Motivation

Within this chapter we motivate why it is worth trying to make a building intelligent.

Our experience with similar projects like [EBB+02] and [RS02] showed that it is possible to use results of
research in neuromorphic systems, traditional and non-traditional artificial intelligence and computer science
to build intelligent rooms and buildings. Whereas these projects have been hugely successful they still lack
one of the most important abilities of something considered intelligent: learning. The next big step forward
is taking one of these existing systems and make them really intelligent by incorporating various forms of
learning.

An environment like an intelligent building is a particularly interesting and challenging environment to
apply learning. Buildings are an environment which is used by real people to do real work. It is not some
sort of playground or specifically designed example which are typically used to verify new algorithms and
architectures. An environment used by real people everyday poses many additional challenges which makes
applying algorithms in such an environment even more interesting. Results obtained from research in such
an environment are likely to be much more substantial then results obtained from a specifically designed
simulated environment.

As new technologies like Bluetooth or Wireless LAN become available new things like tracking individuals
inside a building become feasible. Using Bluetooth for tracking and identifying people inside a building is
one of the possibilities to enable a building to behave in a personalized way. In this paper we explore various
possibilities using Bluetooth and demonstrate its capabilities and limits with a prototype.

A building is a very complex system. From a computational point of view a building behaves completely
non-deterministic. Additional complexity is added because the environment of a building is largely non-
episodic which means that actions execute by some agents (for example a person) my trigger the execution
of other actions by other persons. [Wei99] shows that such an environment is best controlled by a multi-
agent system. [Wei99] calls this approach Distributed Artificial Intelligence (DAI). Different agents don’t
communicate directly with each other about there goals and actions they take. The only communication
between agents that occurs is indirect through changes in the environment (stimergy).

If one looks at the characteristics of an intelligent building it first appears that such an environment is very
unique in itself. But thinking about a building as a kind of robot reveals many similarities. Many problems in
research about intelligent buildings has it’s similarities in robotic research. A good example of this is a robot
moving freely in a room. Such a robot also has to deal with a completely non-deterministic environment as
it can’t influence what happens around it in any way. It can just react to it. Because of this we regard an
intelligent building as a robot. The only difference between a traditional robot and an intelligent building is
that in an intelligent people there are people living and working whereas for a traditional robot people are
working and living around the robot.

Embodied artificial intelligence emphasizes the importance of a real world environment for intelligence. Only
a real environment can reveal how intelligent a system really is. As already shown in [RSDJ02] a building

6

CHAPTER 2. MOTIVATION

is a suitable environment for embodiment. The use of indirect communication between agents through the
environment (stimergy) also depends fully on the availability of an environment which can be modified by
effectors and which can be sensed by sensors.

7

Part II

Architecture

8

Chapter 3

System Architecture

3.1 Basic principles

The input and output devices of the system are sensors and effectors which can be accessed over a sensor
network. Figure 3.1 shows an example of a hardware architecture. All sensors and effectors of all rooms are
connected to the same network. This network is, with the help of a gateway, accessible from an IP based
network.

Office 1 Office 2 Lab 1

Lab 2Lab 3

Presence

Light

Blinds

Outside
Sensors

LonWorks

Gateway

IP

MAS

Key

Figure 3.1: A floor of a building structured into rooms

3.2 Connectivity

The overall ABI system is a combination of two completely different network architectures: field bus and a
computer network (like Ethernet is). A modern office building is typically wired with these two bus systems.
ABI requires access to both, the field bus and the computer network of a building. The field bus (in our case
LonWorks) is used to communicate with the sensors and actors of the building automation system whereas
the computer network is used to communicate between the different agents of the system.

The two networks are connected to each other with the help of a gateway that is connected to both networks.
The gateway forwards data between the computer network and the field bus such that all software parts of

10

CHAPTER 3. SYSTEM ARCHITECTURE 3.3. GENERIC STRUCTURE INFORMATION

ABI can run on the computer network without any direct access to the field bus.

LNS ServeriLon

Input/Output sensors

JAS
Server 1

JAS
Server 2

JAS
Server n

Ethernet

LonWorks
Fieldbus

JAS
Platform

IP-LonWorks Gateway

Figure 3.2: System architecture

Figure 3.2 shows the system architecture of ABI. ABI isn’t dependent on any specific kind of field bus system,
the LonWorks field bus standard is just used as one possibility in the figure. LNS and iLon are LonWorks
specific products that act as an IP-LonWorks gateway. Communication between iLon (which is the real
LonWorks-IP gateway) and the LNS server (which is just a software) is already done over IP, so the only
hardware device that requires direct access to the LonWork bus is the iLon.

Please refer to the chapter Bus abstraction in [RS02] for details about the generic bus interface that abstracts
the complexity of different bus systems from the users.

3.3 Generic Structure information

In the predecessor project AHA we ended up with agents which clearly depended on knowledge of the
building they were running in. The agents depended on the naming convention used, when the field bus was
installed. This was due to the BusAgent exporting the variable names to it’s clients. As an example the
concept room was a group of variables which all had the same variable name prefix.

This system was also pretty limited since it was only able to control one light switch connected to two
lights and one blind switch connected to two blind controllers. The relationships between these switches and
controllers were hard coded or discovered through the usage of regular expressions on the variable names
and thus also relying upon knowledge of the variable naming scheme.

A truly adaptive system should not depend upon such knowledge. It should easily adapt to different buildings.
It should not use the naming system to discover which sensor has a relation to some effectors.

A first step in avoiding this is to not export the real variable names. BusAgent, the one responsible to
encapsulate access to the field bus, should map from real variables names to artificial variable ids and back.
That way the variables information lies only in its value and not in its name (variableId) anymore. For an
example see Figure 3.3.

Although this solves the problem of dependency on a certain naming schema, the agents don’t know anything
about the structure of the building and are not able to obtain any knowledge about that. The most simple
solution to this is to introduce another agent (structure Information agent). This agent would be responsible
for providing informations about the sensors and effectors and their structure in the building.

11

3.3. GENERIC STRUCTURE INFORMATION CHAPTER 3. SYSTEM ARCHITECTURE

BusAgent

variableIds

Field Bus

variable names

Agent Agent

Figure 3.3: Variable Mapping in BusAgent

If we could provide this information in a most general way, our system would be able to adapt to total
different environments. Maybe even environments which we can not imagine today. A very general way of
providing this information is by introducing the concept of clusters. With a cluster being just a group of
variables and other clusters. One can easily describe a building and its field bus by using this notion. For
an example see figure 3.4.

Floor G

Room A

Room B

Room C

subcluster

subcluster

Sensor

Figure 3.4: One floor of an imaginative building

So far we did not talk about how this structure agent will discover the knowledge about the building. A
simple but limited way is to read this information from a configuration file. In a first iteration such an
approach is acceptable. Because the structure agent provides a generic interface, it can later easily be
exchanged with an agent which discovers this information in a more sophisticated way.

12

Chapter 4

Software Architecture

4.1 Overview

The system is realized as a collection of agents which together form a multi agent system (MAS). Every agent
is responsible for one specific task and offers this task as a service to the other agents. Agents that require
functionality they don’t offer themself collaborate with other agents that offer the required capability to
achieve their aims. There is no central agent that acts as a kind of coordinator, all agents act independently
of each other and pursue their specific goals.

The software architecture of the system doesn’t make any specific assumptions about the actual environment
where the agents are running. The whole system could either run on a single machine or distributed across
multiple machines.

4.2 Agents

DistributionAgent

BusAgentBusSim

StructureAgent

ControlAgent

LNSControllerSimController

SimulationPersonTracking

J
A
S

P
l
a
t
f
o
r
m

S
e
r
v
i
c
e
s

Figure 4.1: Different types of agents used

The system is composed of the following agents:

13

4.3. IMPLEMENTATION REQUIREMENTS CHAPTER 4. SOFTWARE ARCHITECTURE

1. Simulation: Simulates a building in case no real (physical) fieldbus is present.

2. BusSim: Simulates a physical fieldbus system. Has the same external interface as the real BusAgent.

3. BusAgent: Generic interface to the physical bus system (for example a LON network).

4. DistributionAgent: Collects interests and distributes messages asynchronously according to this inter-
ests.

5. StructureAgent: Defines the structure of the sensor/effector relationships. Reads this structure infor-
mation from XML files.

6. ControlAgent: Controls a single room consisting of multiple clusters. Learns and adapts rules. Takes
decisions.

7. PersonTracking: Interface to Bluetooth. Tracks and identifies persons. Notifies other agents when
someone enters or leaves a room.

8. VirtualPerson: Simulates an artificial person in a simulated environment

Every agent belongs to one of the three domains of functionality Bus Interface, Agent Services and system
specific functionality. Agents are associated to the the different domains as following:

1. Bus Interface: BusSim, BusAgent

2. Agent Services: DistributionAgent, StructureAgent

3. System specific functionality: ControlAgent, PersonTracking, Simulation, Virtual persons

Only the domain system specific functionality contains agents which are specific to building intelligence. All
other agents in the system provide basic infrastructure services like messaging or hardware bus interface for
other agents.

4.3 Implementation requirements

As ABI is the successor of AHA ([RS02]), we are using the same architecture as in the former AHA project.
All implementation requirements like evaluation of a MAS or the programming language are the same as in
AHA.

See [RS02], chapter software architecture, for these requirements which are thus also valid for ABI.

14

Chapter 5

Multi-agent system

5.1 Overview

The general system architecture approach used within the ABI framework is that of a multi-agent system.
A multi-agent system is structured into several independent and autonomous agents. Each of these agents
pursues it’s own goals independently and cooperates with other agents if necessary. Agents can communicate
with each other in two different ways: direct (1:1) or indirect (1:n). Both approaches are used within ABI.
Details of the interagent communication process can be found in section 5.4.

This chapter is structured as following. Firstly, the concept of an agent in principle is introduced. Following
this an introduction to the principles of JAS, on which basis ABI is constructed, is given. Afterwards the
messaging architecture used for interagent communication is explained.

5.2 Agents

First and most important is the concept of an agent. What exactly is a agent? There is no agreement on a
formal definition of a agent yet but the following definition is generally accepted:
An agent is a computer system that is situated in some environment, and that is capable of autonomous
action in this environment in order to meet its design objectives ([WJ94]).

A more informal definition of an agent would be that a agent is a piece of software that is continually
reevaluating the input it gets from it’s environment to determine the output it should send back (action) to
the system. A agent is generally non-determinating which means that it doesn’t end at any point of time.

An agent, as defined above, that is only reacting to its environment can not be called intelligent. What
are the differences between an agent and an intelligent agent? An intelligent agent is an agent that has the
following characteristics (([WJ94]):

• reactivity : intelligent agents are able to perceive their environment, and respond in a timely fashion
to changes that occur in it in order to satisfy their design objectives

• pro-activeness: intelligent agents exhibit goal-directed behavior by taking the initiative in order to
satisfy their design objectives

• social ability : intelligent agents are capable of interacting with other agents (and possibly humans) in
order to satisfy their design objectives.

An agent can by no means be restricted to be some part of software, as an agent can also be a person or a
piece of hardware (embedded agent). This is especially the case for intelligent buildings where there are all

15

5.3. FIPA AND JAS CHAPTER 5. MULTI-AGENT SYSTEM

three sorts of agents present: persons, software agents and hardware agents.

5.3 FIPA and JAS

5.3.1 Overview

JAS (JSR-87), the java agent specification, is an emerging industry standard currently being developed
under the java community process (JCP). It is, as of late 2002, available as a public review draft ([FLoA02]).
There are already several JAS compliant multi-agent toolkits available from various vendors. JAS specifies
an architecture for agents which run concurrently on physically distributed systems. Such agents require a
possibility to discover each other and to communicate with each other in a standardized way. JAS provides
such a common platform for agents.

JAS is essentially a reification of the FIPA abstract agent architecture (FIPA Standard 00001, [FIP02]).
This makes JAS based systems FIPA (Foundation for Intelligent Physical Agents) compliant. JAS offers a
set of objects and service interfaces that support agent deployment and operation. It doesn’t specify any
implementation specific issues and can as such be implemented with any technology, be it a java based one
or a proprietary one. The JAS specification includes a reference implementation as well as a compatibility
test suit. The reference implementation can be used during development as a replacement for an other JAS
implementation.

The FIPA abstract architecture specification ([FIP02] defines a set of abstract concepts like agent, agent-
directory-service and agent-communication-language (ACL) but it doesn’t specify concrete, programming
language and platform dependent, interfaces for such a system. JAS is one concrete implementation of the
FIPA abstract architecture specification that defines concrete classes and interfaces.

Figure 5.1: FIPA abstract architecture specification and it’s relation to JAS (from the FIPA specification)

It is important to notice that the FIPA abstract architecture specification is not backwards compatible with
FIPA97, FIPA98 or FIPA2000. Thus JAS is only compliant with the FIPA abstract architecture specification
but not with any of the previous FIPA specifications which had a much narrower scope.

Figure 5.1 shows the relationship between the FIPA abstract architecture, the JAS specification and ABLE.
The layers concrete elements and actual implementation are covered by ABLE and the JAS reference im-
plementation whereas the Agent communication and semantics are implemented in ABI itself.

16

CHAPTER 5. MULTI-AGENT SYSTEM 5.3. FIPA AND JAS

5.3.2 The JAS platform

Directory
Service

Naming
Service

Message
Transport
Service

Lifecycle
Service

JAS Platform Services

Figure 5.2: JAS Platform services as specified in JSR-87 (except for lifecycle service)

JAS offers a very high-level interface to agents that take advantage of it. It offers agents the complete
infrastructure to communicate with each other, manage instances of each other and to distribute a multi-
agent system across multiple systems. For the user of a JAS system (an agent) JAS looks like one homogen
platform – a user of the JAS platform doesn’t have to care about where physically an agent is actually
running. JAS hides this complexity from the agent. This enables the agent, or better the developer of the
agent, to focus on it’s core competences and not on minor technical issues like code migration or dynamic
discovery of other agents.

JAS, as proposed in [FLoA02] (public review draft) consists of the three building blocks (5.2):

1. Agent Naming Service

2. Agent Directory Service

3. Message Transport System

Directory
Service

Naming
Service

Message
Transport
Service

Lifecycle
Service

JAS Platform Services

Agent 1 Agent 2 Agent 3 Agent 4

Intelligent Building Intelligence System

Figure 5.3: Agents running inside the JAS framework

Every of these services is part of the JAS platform. All these services can be used by any agent running
within the JAS framework (Figure 5.3). Agents don’t need to worry about where these services are actually
running in an JAS system. The JAS platform automatically takes care of all these issues. The internals
and implementation details of the JAS platform are completely transparent to the agents. The only thing
in common between the agents and the JAS platform are the standardized JAS interfaces as specified.

Figure 5.2 shows a 4’rth service, the lifecycle service. The lifecycle service is not part of the official JAS
specification draft but absolutely necessary to use a JAS system. Because the lifecycle service isn’t stan-
dardized yet every vendor of a multi-agent system delivers it’s own implementation of a lifecycle service so
far. The lifecycle service is not part of the FIPA Abstract architecture specification and because of this it is
also not part of JAS. FIPA argues that lifecycle operations are to implementation specific and can thus not
be abstracted enough to become part of the FIPA abstract architecture specification.

To distinguish agents in the JAS platfrom every agent is assigned a GUID by the JAS platform during
instanciation. All references to an agent in JAS ultimately consist of these global unique ID.

17

5.3. FIPA AND JAS CHAPTER 5. MULTI-AGENT SYSTEM

5.3.3 Agent Naming Service

The agent naming service is very similar to other naming services like conventional DNS or the RMI registry.
The agent naming service maintains a database of all available types of agents in a system. This database
can be queried by users of the agent naming service with different properties like display-name or classname.
As a result the agent naming service returns a unique reference to the type of agent queried that allows it
to later on instanciate such an agent with the help of the lifecycle service.

5.3.4 Agent Directory Service

The directory service manages instances of currently running agents. As such it can be compared to other
directory services like LDAP. The directory service allows it to dynamically find out which other agents are
currently active in the system and how to communicate to them.

The two essential operations that the agent directory service offers are registration of an agent instance
(Figure 5.4) and query (Figure 5.5).

Agent "A1"

Agent Directory Service

Agent Directory Entry "B8"

Agent Directory Entry "A2"

Agent Directory Entry "A3"

register

Figure 5.4: FIPA Agent directory (Register)

Agent "A1" Agent Directory Service

Agent Directory Entry "B8"

Agent Directory Entry "A2"

Agent Directory Entry "A3"

query
Agent "B1"

Agent Directory Entry "A1"

Figure 5.5: FIPA Agent directory (Query)

5.3.5 Message Transport System

The message transport system is the core of JAS. It defines a common way on how agents can exchange
messages with each other. It defines a standard agent communication language (ACL) that can encapsulate
arbitrary types of data as payload. The ACL specified by the message transport system is FIPA compliant.

5.3.6 Lifecycle Service

The lifecycle service is responsible for actually creating new instances of agents and destroying them. It takes
commands from other agents to create or destroy other agents on demand. Typical lifecycle management
operations are stop agent, start agent, freeze, suspend, unfreeze and restart.

18

CHAPTER 5. MULTI-AGENT SYSTEM 5.4. MESSAGING

The lifecycle service is not part of JAS ([FLoA02]) or FIPA ([FIP02]) and thus implementation specific. We
are using the ABLE ([ABL] implementation.

The lifecycle service offers uniform, single-point, access to the JAS platform. The caller of a lifecycle
operation doesn’t have to know or specify where (physically) an agent is running.

5.3.7 Usage scenarios

A typical usage scenario of JAS is:

1. Start up the JAS platform on all servers participating in the multi-agent system. This also automat-
ically starts up all 4 JAS standard services: agent naming service, agent directory service, message
transport system and lifecycle service.

2. A client (or an agent) connects to JAS and uses the agent naming service to discover the agents
available (Figure 5.5) and to register itself (Figure 5.4). After selecting the agents suitable it uses the
lifecycle services to create the necessary instances of those agents.

3. Agents are communicating with each other with the help of the message transport system. Agents
discover each other through usage of the directory service and start/stop each other agents by using
the lifecycle service.

5.3.8 Package

JAS resides in the official namespace javax.agent. This package only contains interfaces and classes which are
part of the specification. Any specific implementation resides in an other package (for example org.jagent).

5.4 Messaging

Interagent communication in big multi-agent systems with many participating agents is a big challenge. As
soon as there are more then just a few agents participating in the system the message flow between different
agent starts to get very complex. Every agents is pursuing it’s own goals and is thus interested in different
types of messages. Some agents care more about a particular message than do others. But how does a
agent which wants to send out a message know which other agents it should send the message to? To all of
them or just to a few selected ones? This requirements and questions clearly show the need for a messaging
middleware to which a sending agent can delegate the task of distributing messages in a multi-agent system.

An additional problem faced by interagent communication is speed. If there are many agents to which a
message needs to be sent to the sending agent requires more time to send out the message. During this
time it is occupied and thus can’t pursue the actions it was originally designed to for. Communication lines
between agents may be of poor quality which further slows down message exchange or some agents might
even become unreachable for some time. This additional obstacles are best met by asynchronous message
delivery.

5.4.1 Interest based, asynchronous messaging

Our approach to deal with the complexity of communication in a multi-agent system is to delegate the
communication itself to an agent whose distinct task it is to distribute messages according to interests. The
distribution agent receives messages from other agents with instructions on how to deliver them. It than
takes over the message and delivers it to all other agents interested in this type of message. The distribution
agent is an agent which can deliver hundreds of messages concurrently. It achieves this by using a large

19

5.4. MESSAGING CHAPTER 5. MULTI-AGENT SYSTEM

threadpool which enables it to assign every message for every destination an own thread. This architecture
makes message delivery much faster and more reliable.

Distribution
Agent

Agent x

Agent y

Agent z

announce:A,C

announce:A,B announce:C

Agent a
to distribute: type C

Figure 5.6: Agents declare there interests to the distribution agent

To be able to fulfill its task the distribution agent needs to know about the interests of other agents. Every
agent that has an interest in some data needs to announce this interest towards the distribution agent (Figure
5.6). The distribution agent collects this announcements and distributes messages according to this collected
interests.

Figure 5.6 shows an example of this principle. Agent x is interested in messages of type A and B, agent y in
messages of type C and agent z is interested in messages of type A and C. Now agent a sends a message of
type C to the distributor. The distributor takes this message and re-distributes it to agent y and z.

5.4.2 Topics

The distribution agent manages interests of other agents in terms of topics. A topic is an identification of
some type of message. All register interest and unregister interest messages relate to a certain topic. The
distribution agent does not now the available topics in advance. The first time a new topic is registered it
automatically creates this topic. If there are no interested agents for a topic the distribution agent destroys
the topic.

There are different types of topics. Every topic is identified by a unique string and this string also tells
of which type a topic is. In case a topic represents a network variable that is managed by the BusAgent
the distribution agent notifies the BusAgent everytime a topic representing a network variable is created
(topic create) or destroyed (topic destroy). When the BusAgent (see) gets a notification about a new topic
it automatically subscribes to the corresponding variable on the network and starts forwarding incoming
updates for the variable to the distribution agent.

5.4.3 Messages

Messages exchanged between agents are all encapsulated within JAS/FIPA compliant ACL transport message
envelops and can thus be forwarded between any JAS/FIPA transport system. Every type of message is
identified by an ID that is unique system wide. See section 10.1 for a detailed description of the content of
every type of message.

20

Part III

Design and Implementation

21

Chapter 6

Design and Implementation

This chapter outlines the technologies used to build ABI.

ABI is a continuation of the former AHA project ([RS02]) and thus many design decisions made during the
implementation of AHA do have a strong influence on the implementation of ABI. This is the reason why
there are many factors, like the programming language or the agent toolkit used, which aren’t justified here.
Details about there justification can be found in the documentation of [RS02].

6.1 Programming language and runtime environment

The programming language of choice for ABI is Java, version 1.4.0.

6.2 MAS framework

As MAS framework ABLE ([ABL]) (version 1.4.1) and the JAS reference implementation ([FLoA02]) is used.
ABLE offers a JAS compliant MAS framework. Details about ABLE are given in appendix B.

6.3 3rd party frameworks

Besides of the MAS framework some other 3rd party libraries are used:

• JFreeChart ([JFR]): Library that provides basic charting capabilities

• JCommon ([JCO]): collection of useful classes; Required by JFreeChart.

• LNS Java SDK ([LNS]): Java API for accessing the LNS server. This API is a product provided by
Echelon (LonWorks).

• Log4J ([L4J]): Logging framework, manages debug/warning/error output, distributed logging

• ANTLR ([ANT]): general purpose parser generator. We use it to parse ARL files

• CASTOR ([CAS]): Castor is an open source data binding framework for Java.

All of these tools and libraries are provided under a opensource license and are thus freely available.

23

6.4. PACKAGES CHAPTER 6. DESIGN AND IMPLEMENTATION

6.4 Packages

The source is structured into the following packages:

• aha.control: Control Agent

• aha.bus: Bus Agent (generic, field bus system independent parts)

• aha.bus.lonworks: LonWorks specific implementation

• aha.framework: Utility classes, Supporting classes

• aha.middleware: Common message format definitions

• aha.messaging: Distribution agent, common definition of messages

• aha.sim : Simulator, User Interface for the system

• aha.sim.person : artificial persons for the simulation

• aha.sim.structure : Generic structure information

• aha.rules: fuzzy logic rules (in ARL)

• aha.rules.learning : learning algorithm for learning fuzzy logic rules

24

Chapter 7

Simulation

7.1 Motivation

During the preceding project AHA we saw the need to develop our system in a simulated environment. It
became difficult to develop new ideas, because they had all to be tested on the real building control system.
As soon as more than one person works on such a project the building control system becomes a critical
resource. As we are developing in the same building where our system is also running, we have the further
problem that our tests do interfere with the running system.

We thus needed an environment which gives our group of agents the same interface (sensors, actors, devices)
as they have when running in the real environment.

Another advantage of a simulated environment is the ability to ”accelerate“ time. It would be possible to
simulate a whole day in for ex. 1 hour. The behavior of different building control systems over a longer
period could thus be observed in a short period.

A major drawback of observing and testing such systems in a simulation lies in the Etymology of the word
to simulate. Latin : simulare which comes from similis - like but not exactly the same. A simulation is
always only an approximation to reality. Adaptive and self-learning systems could thus develop completely
different behaviors in a simulation that they would in reality.

A simulation normally doesn’t need any graphical user interface. For convenience reasons we decided to
write a GUI. Since our simulation should provide the same interface like the real system this GUI could also
be used to interact with the real system.

7.2 Design and Implementation

The most important part which was needed for a simulated replacement is the BusAgent which in turn
uses LNSController to query and update the field bus. This subsystem would be responsible to imitate the
behavior of all the sensors and effectors. It would have to simulate no only all the values sensors and effectors
have during the simulation, but also all the relationships between sensors and effectors. The design of this
subsystem affects how accurate our simulation would bee.

Another part of the simulation is presence detection and person location. As described in chapter 11, we try
to track person locations and learn their behavior via Bluetooth devices. In the simulation we need virtual
persons walking around the floor. Thats what the Agent aha.sim.persons.PersonLocator is responsible for.

Finally one needs a controller for the whole simulation. This subsystem would control the simulation time,
start and stop agents for the simulation life cycle.

25

7.2. DESIGN AND IMPLEMENTATION CHAPTER 7. SIMULATION

GUI

Simulator BusSim

runSim, stopSim

time

set variables

variable update

PersonLocator

Structure

Structure

Figure 7.1: The Simulation Subsystem

To develop such a discrete simulation we faced the choice of either using an existing simulation toolkit or
develop our own. With the decision of our implementation language being Java the choice was already
limited. The toolkits which were left were such as Java Simulation Package [JSP] or JToops [Rin] or JSim
[JSI].

But we decided not to use such a preexisting toolkit. The main reason was that we expected to spend at least
as much time to learn to toolkit as we would need to implement the small part which we actually needed. By
doing our own implementation we could also integrate the simulation much better with our whole system,
using ABLE as an example.

26

Chapter 8

Learning a maximal structure fuzzy
rule base with an anytime learning
algorithm

8.1 Overview

This chapter is about the learning algorithm used for making a building intelligent. It is an online learning
algorithm which continuously updates the rulebase of several fuzzy logic controllers. It continually adapts
itself to the changing conditions of the environment through a implicit punish/reward feedback mechanism.
The inputs to the learning process are real valued variables acquired from sensors, the output of the learning
algorithm is a model consisting of a number of fuzzy rules. These fuzzy rules are used by a fuzzy logic
controller to take decisions. Feedback acquired from the environment is continuously used by the learning
process to adapt the fuzzy logic rules.

The algorithm presented here learns rules for a multiple input single output (MISO) fuzzy logic controller.
The control system for the adaptive building intelligence system, however, is a multiple input multiple output
(MIMO) system. We will show in the next chapter how we apply the MISO learning algorithm to a system
that is MIMO.

8.1.1 Features of the algorithm

• online / anytime

• punish and reward type of feedback

• learns maximal structure fuzzy rules

• adapts itself to changing conditions – what might have been true in the past doesn’t necessarily have
to be true in the future

8.1.2 Related Work

The development of this algorithm has been inspired by many different sources. The most important sources
of inspiration were the papers [CCSZ21], [SZ96], [Bon97] and [Bon96a].

There are a few offline algorithms for learning maximal structure fuzzy rules from a fixed size training set,
for example: [CCSZ21], [CZ16], [CZ65]. These algorithms are distinct offline processes: first there is learning

27

8.2. NOTATION
CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME

LEARNING ALGORITHM

from some training set and second the learned rules are applied to other data. There is no feedback process
that changes the once learned rules according to the changing conditions of the environment.

Other approaches for learning fuzzy logic rules include algorithms that are based on the ideas of evolutionary
computing. See for example [Bon96b].

8.2 Notation

We largely use the same notation as [Ful00], [CCSZ21] and [CZ16].

An introduction to fuzzy logic and fuzzy inferencing is given in Appendix A.

Every fuzzy variable consists of a number of fuzzy sets. Every of these fuzzy sets is identified by a unique
name (label) which associates a human readable string with a formal definition of a fuzzy set. All fuzzy sets
together define a set of membership functions.

The set of all labels of a fuzzy variableX0 is denoted as L. Example: L(X0) = {HN,MN,SN,Z, SP,MP,HP}
(which is a very typical generic fuzzy variable, see [Ful00] , section 1.5.3). For a discrete variable Y L(Y) is
the set of all possible values of the discrete variable. Example: L(Y) = {0.0, 1.0, 2.0}.

A ruleset consists of a finite number of rules R (equation 8.1). r specifies the number of rules of the ruleset
(equation 8.2). It isn’t necessary to specify the output variable as this is a MISO system where there is only
one output.

R = {R1, R2, . . . , Rr} (8.1)

r = |R| (8.2)

A rule (equation 8.3) consists of a set of sets which specify the labels for every fuzzy variable that need
to be true such that the rule becomes true. yj is a fuzzy or discrete output value of the output variable:
yj ∈ L(Y).

Ri = ((E0 ⊂ L(X0), E1 ⊂ L(X1), . . . , Er ⊂ L(XN−1)), yj) (8.3)

Ni (equation 8.4) denotes the number of fuzzy input variables of rule Ri.

Ni = |{X0, X1, . . . , XN−1}| (8.4)

Only sets Ei are valid that satisfy the condition Ei ∈ P(L(Xi)), where Xi is a fuzzy variable. In a more
human readable form a rule looks like this:

Ri : if X0 is E0 and X1 is E1 then Y is yj

The set of conditions Ei of a particular fuzzy variable Xi is meant to be inclusive which means that every
lik ∈ Ei makes the condition true. lik denotes a single label of the fuzzy variable Xi.

Eij denotes the set Ej of rule Ri.

Example:
Fuzzy variables: X0 and X1. N = 2
Labels: L0 = {A,B,C,D,E}, L1 = {F,G,H}

28

CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME
LEARNING ALGORITHM 8.3. THE ALGORITHM

R = {R0, R1}
Output variable is Y , L(Y) = {y0, y1, y2}
R0 = (({A,B,E}, {F,H}), y0)
R1 = (({D,E}, {G}), y2)
E00 = {A,B,E},E10 = {D,E},E11 = {G}
The rules of this example could be expressed in boolean notation as:
R0 : if (X0 is A or B or E) and (X1 is F or H) then Y is y0

R1 : if (X0 is D or E) and (X1 is G) then Y is y2

8.3 The algorithm

Two sets of rules are used by the algorithm: The trainingSet RT and the set of definitive rules RDEF . All
definitive rules together form the model on basis of which a fuzzy logic controller takes decisions.

The trainingSet consists of fuzzy rules that were directly constructed from external input received. A entry
of the trainingSet is constructed by fuzzifying the real-valued input for every input and output variable of
the fuzzy logic controller. Such an entry is very simple as there is only one condition for every fuzzy input
variable. An example of a training set entry would be (({A}, {G}), y0).

There are typically many more entries in the set of training entries than in the set of definitive rules. This
is due to the nature of the algorithm whose aim it is to deduct maximal structure rules from the known
training set entries.

8.3.1 Definitions

Definition 1 (more general) A rule Ri is more general then a rule Rj if
∑|Ei|
k=1 |Eik| >

∑|Ej |
k=1 |Ejk| is

true.

Definition 2 (real subset) A set A is a real subset of B if (A ⊂ B) and (|A| < |B|) is true.

8.3.2 Operators

The algorithm uses the operators subsumes, antecedentSubsume, amplify and amplifyIsPossible.

Definition 3 (subsume) The rule Ri subsumes in the rule Rj if the following condition is valid for all Eik
of Ri : For all k = 1 . . . N it is true that Eik ⊂ Ejk. N is the number of fuzzy variables. subsume(Ri, Rj)
is true if the above conditions hold and yi = yj.

Definition 4 (antecedentSubsume) antecedentSubsume(Ri, Rj) is true if the following conditions holds
for all Eik of Ri: For all k = 1 . . . N it is true that Eik ⊂ Ejk. N is the number of fuzzy variables.

Definition 5 (amplify) amplify(T) computes a collection of rules which are generalizations of T whereas
T ∈ RT . Every entry of the collection contains an additional condition for one fuzzy variable. The amplifi-
cation is done incrementally: Every time an additional label from Li is added to Ei for the lowest possible i
for which |Ei| < |L(Xi)|. The output variable and value is not influenced by the amplification process.

Definition 6 (amplifyIsPossible) An amplification RA is possible if there are no trainingSet entries T ∈
RT for which antecedentSubsume(T,RA) is true and for which yi 6= yj is true.

29

8.4. MOTIVATION
CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME

LEARNING ALGORITHM

8.3.3 Algorithm

The following procedure is execute every time the system receives new input from the system (which can be
a punishment or a reward):

Step 0 Wait for new input.

Step 1 Transform the real-valued sample into an trainingSet entry (fuzzification). This new trainingSet entry
becomes rule RT . RT has a set of antecedent conditions ETi for every fuzzy input variable Xi.

Step 2 Test for every ruleRD that is part of the definitive ruleset (RD ∈ RDEF) whether antecedentSubsume(RT ,
RD) is true.
If yes, assign Ra (Ra ∈ RDEF) to the rule RD for which antecedentSubsume(RT ,RD) was true and
goto step 3.
If no, goto step 8.

Step 3 Test if subsume(RT ,Ra) is true. If yes, the input sample was a reward. Stop and go to Step 0. If
subsume(RT ,Ra) is false there is an invalid rule in RDEF (environment changed). At this point the
output value of the sample is different from the output value of a rule in the definitive ruleset (ys 6= yt
). Goto stop 4.

Step 4 If all ETi ⊂ Eai (i = 0..N) and a minimum of one of these subsets is a real subset (|ETi| < |Eai|) the
rule can be re-used. Goto step 5 in this case. If not, goto Step 6.

Step 5 Assign Rm = Ra. Remove Ra from the set of definitiveRules RDEF .
Reassign every Emi as following: Emi = Eai − ETi (remove all conditions ETi ⊂ Eai from Eai). Add
Rm to the definitive ruleset RDEF and goto step 7.

Step 6 Remove Ra from the set of definitive Rules RDEF and goto step 7.

Step 7 Test if there are entries in the trainingSet RRT which became invalid because of the removal of Ra. All
trainingSet entries Tj for which antecedentSubsume(Tj , Ra) is true but antecedentSubsume(Tj , Rm) is
false are removed. Goto step 8.

Step 8 Add the new sample RT to the trainingSet RT . Goto step 9.

Step 9 Amplify RT and assign the resulting sorted set of amplifications to RA. Ramp is the rule currently
considered (Ramp ∈ RA). Sort RA such that the least general rule R ∈ RA is the first element of
RA and the most general rule R ∈ RA is the last element of RA.

Step 10 Assign Ramp to the least general rule in RA for which amyplifyIsPossible(Ramp) has not been called
yet. Goto Step 11.

Step 11 If amplifyIsPossible(Ramp) is true, goto Step 10. If false, add the lastRamp for which amplifyIsPossible(Ramp)
was true to the set of definitive rules RDEF . Goto step 0.

Figure 8.1 illustrates the algorithm.

8.4 Motivation

The basic idea of the algorithm is to cover as much of the input space as possible with the fewest possible
rules. In case of n fuzzy input variables the input space is a n Dimensional with a finite number of elements
in every dimension (every fuzzy set of every fuzzy variable). The principle of the fewest possible rules can
also be state as aiming for the most general rules.

To illustrate the principle idea a fuzzy ruleset with the two fuzzy input variables A and B is assumed. L(A) =
{x, y, z} and L(B) = {g, h, j}. Figure 8.2 shows the state space covered by the rule (({x, y, z}, {h, j}), yj2)
illustrated as an area in 2-dimensional space.

30

CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME
LEARNING ALGORITHM 8.5. EXAMPLES

In case the additional trainingset entry ((x, h), yj1) is added to the trainingSet the state space covered by
the existing rule as shown in figure 8.2 needs to be reduced. Figure 8.3 shows the state space covered after
the modification of the rule (which made the rule less general).

8.5 Examples

This section contains a very simple example of how rules are learned from data. Initial assumptions are:

• Fuzzy input variables are A and B

• Fuzzy sets of these variables are L(A) = {x, y, z}, L(B) = {g, h, j}

• Definitive Ruleset RDEF is empty

• Output variable is Z, L(Z) = {z1, z2}

Now a trainingset entry ((x, g), z1) is added to the trainingset. As a result of the learning algorithm the
rule (({x, y, z}, {g, h, j}), z1) is added to the set of definitive rules. Note that this is the most general rule
possible. This is the case because there is just one trainingSet entry available which allows it to construct a
maximally general rule because there will never be any conflict between output values.

Assume the next trainingset entry (added incrementally when available) is ((z, g), z1). This doesn’t change
anything because it is already covered by the rule in the definitive ruleset that was added in the last step.

Ensuing this an entry ((z, h), z2) becomes available. This does have to change something in the definitive
ruleset because as this entry generates a conflict with the rules already in there. The result of the learning
algorithm removes the rule (({x, y, z}, {g, h, j}), z1) and adds it again as (({x, y}, {g, j}), z1). In addition it
adds the new rule (({x, y, z}, {g, h}), z2).

The definitive ruleset RDEF now contains the two rules:

• (({x, y}, {g, j}), z1)

• (({x, y, z}, {g, h}), z2)

8.6 Implementation

Figure 8.4 shows the structure of the implementation of the learning algorithm.

The implementation (which is in package aha.rules.learning) is structured into classes as following:

• FuzzyLearner : The main class that does the learning. It is responsible for loading the state from
persistent storage and saving state to persistent storage.

• DefinitiveRuleSet : Set that holds all definitive rules and offers operations that affect all rules in the
set. Implements the operator subsumes.

• DefinitiveRuleSetIterator : Iterator for DefinitiveRuleSet.

• FuzzifiedRule: Represents one single rule in a fuzzified form. Implements the operators amplify, isAn-
tecedentSubset, isAntecedentRealSubset and subsumes.

• FuzzifiedRuleFactory : Supporting Methods for creating FuzzifiedRule instances from different sources.

• TrainingSet : Set of all entries in the trainingset. Implements the operator isAmplificationPossible.

31

8.6. IMPLEMENTATION
CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME

LEARNING ALGORITHM

• TrainingSetEntry : A single trainingset entry.

• TrainingSetIterator : Iterator for TrainingSet.

• Model : Model is part of the package aha.rules and explained elsewhere (section 9.6).

A agent that is using the learning algorithm as implemented in aha.rules.learning only uses the methods
exported in FuzzyLearner. This class offers all methods necessary to incrementally add new data samples.
FuzzyLearner decides afterwards whether the data sample provided is a punishment or a reward and takes
the necessary actions to adapt the ruleset. FuzzyLearner also takes care of the actual Model that instanciates
the rules learnt. It continuously updates the model with the updated rulebase so that the Model can be used
without interruption, even during the time learning takes place. See section 9.6 for a detailed description of
the internals of the Model and it’s supporting classes for dynamic rule creation and modification.

32

CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME
LEARNING ALGORITHM 8.6. IMPLEMENTATION

new Data sample
becomes available

end of learning

fuzzify (1)

antecedentsSubsume()=true?
(2)

output matches?
(3) reward

add to trainingSet (8)

Subsets / >1 real subset?
(4)

remove conditions (5)
replace rule (5)

remove Rule (6)

remove conflicts in trainngSet (7)

amplify (9) amplificationPossible ? (11)

add last possible to definitive ruleset (11)

Yes: Yes:

No:

Yes:

No:

No:

No:

pick out least general not verified rule (10)

Yes:

Figure 8.1: UML activity diagram for the learning algorithm. All numbers refer to the respective steps (0
to 9) of the description of the algorithm.

33

8.6. IMPLEMENTATION
CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME

LEARNING ALGORITHM

g h j

B

A

x

y

z

Figure 8.2: The state space covered by the rule (({x, y, z}, {h, j}), yj2)

g h j

B

A

x

y

z

Figure 8.3: The state space covered by the rule (({y, z}, {h, j}), yj2)

34

CHAPTER 8. LEARNING A MAXIMAL STRUCTURE FUZZY RULE BASE WITH AN ANYTIME
LEARNING ALGORITHM 8.6. IMPLEMENTATION

Figure 8.4: UML class diagram of the learning algorithm implementation

35

Chapter 9

Anytime learning and fuzzy
inferencing applied to intelligent
buildings

9.1 Overview

This chapter is about the actual decision making on basis of the rulebase learnt and constructed by the
learning algorithm. The basic fuzzy logic principles used throughout this chapter are explained in detail in
appendix A. Appendix B gives details about ABLE and ARL. Especially familiarity with ARL is useful to
understand the content of this chapter.

9.2 Model and learning units

The abstract concept underlying all decision making is the Model. A model is a internal representation on
which basis all decisions are taken and all learning takes place. Each model consists of a set of rules which
are modified according to feedback from the environment. Every model is independent of all other models
in the system which implies that every model has exclusive access to some output value (effector).

All learning takes place on the level of learning units. Every learning unit has an associated model. Model
and learning units are thus tightly integrated structures. They take decisions about the same output value(s)
and base there decisions on the same input values. They, however, have different responsibilities. The model
is responsible to take decisions on basis of existing rules whereas the learning unit is responsible for providing
these rules to the model. The learning unit constantly adapts the rulebase of the model. This architecture is
a two-layer inferencing process because there is a process that uses a model (learning unit) to take decisions
about the rulebase of an other model (FLC).

Figure 9.1 shows the relationship between a model that takes decisions about a room and a learning unit.
The learning unit (b) takes decisions about the rulebase of the model (a). For the learning the learning unit
(b) uses the learning algorithm as well as a rulebase (c). The rulebase used for the learning process (c) is
fixed and is only required for the fuzzification of the data samples that the learning unit gets as reinforcement
signal. The learning unit fuzzifies this data samples and generates punishments/rewards from it. The model
that takes decisions about the environment uses the rulebase (d) as a basis which gets constantly updated
by the learning unit (b).

The learning algorithm as explained in chapter 8 is only capable of learning a rulebase for multiple input
single output (MISO) fuzzy logic controllers. Because of this ABI is structured such that every output value
(effector) is controlled by one learning unit and by one model.

36

CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT
BUILDINGS 9.3. DECISION MAKING

Model

FLC

Rule base
(Decision)

Rule base
(Learning)

Learning Unit

FuzzyLearner

FLC
Input

output

Temperature
Sun East
Sun West
Sun North
...

Sensors Inputs Light on/off

Blinds up/down

per-Model outputs

(a)

(b)

(c)

(d)

Figure 9.1: Relationship between Model and Learning Unit

E E E

S S

E E S

S

E E

SSE

P
P

P

C1

C2 C3

C4

C5

C6

C7

Figure 9.2: Structure of a single room (example)

Figure 9.2 shows how learning units are associated to clusters in a room. Cluster C1 consists of the two
clusters C2 and C3. C2 contains the two clusters C4 and C5 which each are associated to a learning unit.
C4 contains two effectors and one sensors and C5 contains two sensors and one effector. Because the clusters
C4 and C5 each have there own learning unit they also have there own rulebase on basis of which decisions
about the effectors in the clusters C4 and C5 are taken.

9.3 Decision Making

Decisions in AHA are taken by a fuzzy logic inferencing engine on basis of a rulebase. Every Model, which
represents a number of rules, acts as an independent Fuzzy logic controller (FLC). This fuzzy logic controller
takes care of the fuzzification, the inferencing itself and the defuzzification. See section A.1.3 for details.

Figure 9.3 shows an example of a possible FLC with input and output values. The actual input values and
the output value of an FLC are dynamic. Which FLC gets associated with which input and output values
is determined by the structure information delivered by the structure agent.

37

9.4. DESIGN OF MEMBERSHIP FUNCTIONS
CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT

BUILDINGS

FLC

Temperature
Sun East
Sun West
Sun North
Humidity

Light Switches
Blind Switches
Illuminance
Presence
Light Status
Blinds Status

Light on/off

Blinds up/down

Global inputs

per-Room inputs

per-Room outputs

Rule base

Figure 9.3: An FLC and it’s inputs and outputs

9.4 Design of membership functions

The input values of the system that need to be fuzzified are:

• DayLight (indoor)

• Presence (Movement)

• Light status

• Blind status

• Humidity

• Temperature

• Illumination

• Radiation

• Time

For every of these input variables there is a fuzzy membership function associated with a number of fuzzy
sets. These definitions of membership functions are static and pre-defined. The system doesn’t change them
during runtime. Membership functions are formally defined in ARL ([ARL]).

In the following sections some of the membership function definitions are given in ARL and graphical. For
the definition of the other ARL files see the arl source files.

What is important about membership functions that are used for automatic learning processes is that they
are defined for the whole domain of the fuzzy variable. To assure this the membership function must assign
at least one fuzzy set a truth value that is greater than the alpha cutoff value. We use a alpha cutoff value
of 0.2 which means that every fuzzy variable V must satisfy the condition V (x, y) > 0.2 for every x in the
domain of the fuzzy variable for at least on y whereas y is a fuzzy set.

38

CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT
BUILDINGS 9.4. DESIGN OF MEMBERSHIP FUNCTIONS

9.4.1 Radiation

Figure 9.4 shows the ARL definition of the fuzzy variable Radiation. Figure 9.5 shows the graph of the fuzzy
variable Radiation.

Fuzzy RadiationEast = new Fuzzy(0.0 , 10000.0) {
Sigmoid A_completlyDark = new Sigmoid (0.0, 10.0, 20.0, ARL.Down);
Shoulder E_lotsOfSun = new Shoulder (3000.0, 5000.0, ARL.Right);
Triangle D_sun = new Triangle (900.0, 2000.0, 3500.0);
Triangle B_littleLight = new Triangle (15.0, 50.0, 250.0);
Triangle C_light = new Triangle (200.0, 600.0, 1400.0);

};

Figure 9.4: Membership function of radiation

Figure 9.5: Graphical version of the membership function radiation

9.4.2 Temperature

Figure 9.6 shows the ARL definition of the fuzzy variable Temperature. Figure 9.7 shows the graph of the
fuzzy variable Temperature.

Fuzzy Temperature = new Fuzzy(-30.0 , 100.0) {
Shoulder E_hot = new Shoulder (28.0, 100.0, ARL.Right);
Triangle D_veryWarm = new Triangle (18.0, 25.0, 39.0);
Shoulder A_veryCold = new Shoulder (-30.0, 0.0, ARL.Left);
Triangle C_warm = new Triangle (8.0, 15.0, 22.0);
Triangle B_cold = new Triangle (-5.0, 5.0, 14.0);

};

Figure 9.6: Membership function of Temperature

9.4.3 Illumination

Figure 9.8 shows the ARL definition of the fuzzy variable Illumination. Figure 9.9 shows the graph of the
fuzzy variable Illumination.

9.4.4 Daytime

Figure 9.10 shows the ARL definition of the fuzzy variable Daytime. Figure 9.11 shows the graph of the
fuzzy variable Daytime.

39

9.5. STRUCTURE OF RULEBASE
CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT

BUILDINGS

Figure 9.7: Graphical version of the membership function temperature

Fuzzy Illumination1 = new Fuzzy(0.0 , 10000.0) {
Sigmoid A_completlyDark = new Sigmoid (0.0, 10.0, 20.0, ARL.Down);
Shoulder E_lotsOfSun = new Shoulder (3000.0, 5000.0, ARL.Right);
Triangle D_sun = new Triangle (900.0, 2000.0, 3500.0);
Triangle B_littleLight = new Triangle (15.0, 50.0, 250.0);
Triangle C_light = new Triangle (200.0, 600.0, 1400.0);

};

Figure 9.8: Membership function of illumination

9.5 Structure of rulebase

The rulebase for the different models in ABI contain three parts:

1. Definition of fuzzy variables

2. Static rules

3. Dynamic rules

The static rule part consists of a block of rules which are static. This rules are used for the fuzzification of
the data samples by the learning process. The labels of static rules start with the prefix SUPPORT . The
other block of rules is the block of rules that are continuously adapted by the learning process. These rules
can be removed and modified and the learning process can add new ones to this block of rules. The labels
of dynamic rules start with the prefix RULE .

9.5.1 Fuzzy OR operator

Because the fuzzy inferencing engine of ABLE doesn’t support the fuzzy OR operator the learned rules
(which use fuzzy OR and AND) can’t be used without converting them into an equal set of conditions
combined with fuzzy AND.

Converting a list of conditions that are combined with OR into a list of conditions that are combined with
AND is no problem in boolean logic but not in fuzzy logic. Figure 9.12 and Figure 9.13 illustrates the problem.
Figure 9.13 shows the fuzzy hedge not applied to the fuzzy set normal of the variable DayLightIndoor.
Because the slope of falling edge is not steep enough the not normal fuzzy set of DayLightIndoor is also true
in most of the range where the fuzzy set normal is also true. This constructs a situation where there are
states where both states, normal and not normal are true.

To construct a fuzzy set that works as a complement to an other fuzzy set the rising and falling edges of the
not function need to be much steeper. Figure 9.14 illustrates the function after applying the three hedges
not, positively and slightly.

40

CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT
BUILDINGS 9.6. IMPLEMENTATION

Figure 9.9: Graphical version of the membership function illumination

Fuzzy DayTime = new Fuzzy(0.0 , 86400.0) {
Linear F_night2 = new Linear (75600.0, 86400.0, ARL.Up);
Linear A_night1 = new Linear (0.0, 18000.0, ARL.Down);
Triangle E_evening = new Triangle (57600.0, 68400.0, 79200.0);
Triangle B_morning = new Triangle (14400.0, 25200.0, 36000.0);
Triangle C_midday = new Triangle (28800.0, 43200.0, 57600.0);
Triangle D_afternoon = new Triangle (43200.0, 54000.0, 64800.0);

};

Figure 9.10: Membership function of DayTime

9.5.2 OR to AND conversion

The structure of the fuzzified rules that result from the learning process is (({a, b, c}, {x, y, z}), o1) as de-
scribed in chapter 8. The sets Ei, {a, b, c} and {x, y, z} in the above example, are meant to be translated to
rules as X is a or b or c.

Because a fuzzy or operator isn’t available the inverse set Eiinv = L(X)− Ei for every variable X is taken
and connected with and not positively slightly. Applied to the example above (under the assumption that
L(X1) = {a, b, c, d, e}) this would result in the rule X is not positively slightly d and not positively slightly e.

9.6 Implementation

Figure 9.15 shows the UML class diagram of the package aha.rules which contains all code related to the
underlying Model of a FLC as well as all code related to the dynamic creation of rules.

The implementation (which is in package aha.rules) is structured into classes as following:

• Model : Represents a generic model, consisting of a set of rules and methods for modifying, adding and
removing rules.

• ControlModel : Specific Model for learning that inherits from Model. Implements building specific
behavior.

• Rule: Represents a single rule. For this it is associated with an instance of AbleRule.

• RuleInfo: Encapsulates additional attributes of a rule.

• AHARuleSet : A set of rules (consisting of several blocks of rules) that inherits from AbleRuleSet. It’s
only purpose is to get access to the protected attributes of AbleRuleSet.

• AHARuleBlock : Inherits from AHARuleBlock. Supports the dynamic removal and addition of rules
from/to AbleRuleBlock instances.

• DecisionHistory : Class that manages a history of all decisions taken.

41

9.7. RELATED WORK
CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT

BUILDINGS

Figure 9.11: Graphical version of the membership function daytime

Figure 9.12: The fuzzy set normal of the variable Daylightindoor

• DecisionHistoryEntry : Represents a single DecisionHistory entry. A decision history entry stores all
input values that were valid at the point of time a decision was taken.

9.6.1 Dynamic creation of rules

New rules produced by the learning process are first created as instances of FuzzifiedRule. FuzzifiedRule
has a method getAbleRule that constructs a Rule instance out of a FuzzifiedRule. This method uses various
support routines to dynamically create a new rule that can be inserted into an AbleRuleBlock.

9.7 Related work

In [Sto00] (Layered reinforcement learning) a similar approach is used but with reinforcement learning
algorithms but the multi-layered learning principle used is the same (output of one learning unit is input to
an other).

42

CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT
BUILDINGS 9.7. RELATED WORK

Figure 9.13: Fuzzy hedge not applied to the fuzzy set normal of the variable Daylightindoor

Figure 9.14: Fuzzy hedges not positively slightly applied to the fuzzy set normal of the variable Daylightin-
door

43

9.7. RELATED WORK
CHAPTER 9. ANYTIME LEARNING AND FUZZY INFERENCING APPLIED TO INTELLIGENT

BUILDINGS

Figure 9.15: UML class diagram of the package aha.rules

44

Chapter 10

Agents

ABI consists of a number of agents as shown in figure 4.1. Every agent is communicating with other agents
with asynchronous messaging. There are no synchronous method calls between agents.

In this chapter every agent is described in detail. This includes a specification of all messages sent out and
all messages received by every agent.

Every agent inherits directly from the class AHAAgent which implements functionality which is common
to all agents. AHAAgent indirectly implements AbleJASAgent which makes every AHAAgent also a JAS
compliant agent.

10.1 Messaging

Table 10.1 lists all messages and their parameters. The only content of messages are key/value pairs which are
the parameters. There is no other payload. Content is identified by a string (aha.msg.*). The identification
of a message is a system wide unique ID.

45

10.1. MESSAGING CHAPTER 10. AGENTS

ID Description Sent to Parameters

SUBSCRIBE INTEREST Subscribe to
topic

distribution
agent

Name Type

aha.msg.topic String
aha.msg.sender AgentDescription

DESUBSCRIBE INTEREST desubscribe
from topic

distribution
agent

Name Type

aha.msg.topic String
aha.msg.sender AgentDescription

DISTRIBUTE MESSAGE Request deliv-
ery to topic

distribution
agent

Name Type

aha.msg.topic String
aha.msg.receiver AgentDescription
aha.msg.type String
aha.msg.content Object
aha.msg.delay Integer

TIMED EVENT Schedule mes-
sage for later
delivery

distribution
agent

Name Type

aha.msg.seconds Integer
aha.msg.sender AgentDescription
aha.msg.locator Locator
aha.msg.receiver AgentDescription
aha.msg.msg AHAMessage

SET PROPERTY Update value
(modify)

bus agent Name Type

any any

GET PROPERTY Request value bus agent
Name Type

aha.msg.property String
aha.msg.sender AgentDescription

VARIABLE UPDATE New value avail-
able

arbitrary Name Type

any any

TOPIC CREATE New topic
created by
subscriber

arbitrary Name Type

aha.msg.topic String

TOPIC REMOVE Last subscriber
unsubscribed

arbitrary Name Type

aha.msg.topic String

GET ELEMENTS Request struc-
ture information

structure
agent

Name Type

aha.msg.clusterId Integer
aha.msg.elementType Integer
aha.msg.sender AgentDescription

GET ELEMENTS RESULTS Structure infor-
mation

arbitrary

Name Type

aha.msg.clusterId Integer
aha.msg.elementType Integer
aha.msg.elements Collection

PERSON ENTERED Person entered a
room

arbitrary
Name Type

aha.msg.clusterId Integer
aha.msg.personId Integer

PERSON LEFT Person left a
room

arbitrary
Name Type

aha.msg.clusterId Integer
aha.msg.personId Integer

ANNOUNCE RULE Human-
readable rule-
base

arbitrary

Name Type

aha.msg.clusterID Integer
aha.msg.type String
aha.msg.arlRuleBase String
aha.msg. fuzzi-
fiedRuleBase

Collection

Table 10.1: Table of all messages

46

CHAPTER 10. AGENTS 10.2. BUS AGENT

10.2 Bus Agent

10.2.1 Functionality

The bus agent provides a way of accessing the field bus of a building. The bus agent acts as a proxy between
the other agents and the bus abstraction implementation itself. The current BusAgent is an improved
version of the one used in the predecessor project AHA. The added functionality was the change from RMI
to message based communication and the encapsulation of variable names behind ids.

10.2.2 Messages

BusAgent receives the following messages :

• TOPIC CREATE

• TOPIC REMOVE

• GET PROPERTY

• SET PROPERTY

10.2.3 Implementation

Bus agent instantiates a concrete implementation of the bus abstraction layer. It reads from the config file
which implementation to instantiate.

All common tasks between BusAgent and BusSim have been extracted into the common class BusFrontend.
As an example although the messages are received by BusAgent, it is actually BusFrontend who processes
them.

For the encapsulation of variable names BusAgent needs a config file which specifies how to map between
ids and name. The grammar for this file is shown in listing C.4

The implementation (which is in package aha.bus) is structured into classes as following:

• BusAgent : interfaces to the actually used implementation of the BusController interface.

• BusFronted : does all the message handling for BusAgent

• BusController : interface which must be implemented for every field bus type.

47

10.2. BUS AGENT CHAPTER 10. AGENTS

Figure 10.1: UML class diagram of the bus agent

48

CHAPTER 10. AGENTS 10.3. STRUCTURE AGENT

10.3 Structure Agent

10.3.1 Functionality

This agent is responsible to deliver information about the structure of the building and its sensors and
effectors to its clients. See 3.3 for an elaboration on the reasons for creating such a structure information.

10.3.2 Messages

Structure Agent only listens to GET ELEMENTS messages. It recieves them from other clients wanting
information about the structure of the building, field bus. In response to these messages it sends out
GET ELEMENTS RESULT messages, which contain a collection of the matching ElementInfo classes.

The GET ELEMENTS message contains the following fields :

• aha.messaging.clusterId = Java.lang.Integer

• aha.messaging.elementType = Java.lang.Integer

• aha.messaging.getRecursiveElements Java.lang.Boolean

elementType specifies which kind of element that you want. Examples are : light, blinds, blindSwitch, etc.
The elementTypes are specified in the class aha.structure.ElementType.

clusterId specifies the clusterId in which Structure Agent should search for elements. I f null is passed it
simply search in a list of all elements, if 0 is passed it only searches the top level elements/clusters.

getRecursiveElements specifies if Structure Agent should search recursively. A clusterId of 0 and recursive
true would thus return as a clusterId of null.

10.3.3 Implementation

As described in 3.3 this implementation makes no dynamic discovery of structure information. It reads all
the data from an XML file. See refstructureGrammar for the grammar of this file. 10.1 is an example of this
file. On can clearly see the two concepts cluster and element.

Listing 10.1: example config structure agent
<ahaStruct>

<c l u s t e r id =”1” displayName=”4154 ” >
<c l u s t e r id =”2” displayName=”4154 ” >

<c l u s t e r id =”2000” displayName=”4154 ”>
<element id =”3” type=” l i g h t ” e f f e c t o r =”true ” senso r=”true ”

feedback=” f a l s e ”/>
<element id =”4” type=” l i g h t ” e f f e c t o r =”true ” senso r=”true ”

feedback=” f a l s e ”/>
<element id =”5” type=”l i gh tSw i t ch ” e f f e c t o r =” f a l s e ” s enso r=”

true ” feedback=”true”/>
<element id =”6” type=”l i gh tSw i t ch ” e f f e c t o r =” f a l s e ” s enso r=”

true ” feedback=”true”/>
<element id =”15” type=” l i g h t ” e f f e c t o r =”true ” senso r=”true ”

feedback=” f a l s e ”/>
<element id =”16” type=” l i g h t ” e f f e c t o r =”true ” senso r=”true ”

feedback=” f a l s e ”/>
<element id =”17” type=”l i gh tSw i t ch ” e f f e c t o r =” f a l s e ” s enso r

=”true ” feedback=”true”/>

49

10.3. STRUCTURE AGENT CHAPTER 10. AGENTS

<element id =”18” type=”l i gh tSw i t ch ” e f f e c t o r =” f a l s e ” s enso r
=”true ” feedback=”true”/>

<element id =”19” type=”l i gh tSw i t ch ” e f f e c t o r =” f a l s e ” s enso r
=”true ” feedback=”true”/>

<element id =”20” type=”l i gh tSw i t ch ” e f f e c t o r =” f a l s e ” s enso r
=”true ” feedback=”true”/>

</c l u s t e r>

Altough it is not visible in the configuration file Structure Agent treats elements and cluster as almost the
same. For clusters it returns also ElementInfo instances. It manages all these elements in two collections,
one contains only clusters and the other contains all ElementInfos. The first one is used to find clusters and
their sub clusters.

Figure 10.2: UML class diagram of the structure agent

The implementation (which is in package aha.structure) is structured into classes as following:

• StructureAgent : Agent itself, does all the management of the elements

• ElementType: contains constants for all the element types we use

• ElementInfo: value object contains all the information we have about an element

• Cluster : used to manage cluster - sub cluster relationships

50

CHAPTER 10. AGENTS 10.4. SIMULATOR AGENTS

10.4 Simulator Agents

10.4.1 BusSim - Simulation of BusAgent

Functionality

The most important part which was in need for a simulated replacement was the BusAgent which in turn
used LNSController to query and update the building network. This Agent is responsible to imitate the
behavior of all the sensors and effectors. It has to simulate not only all values sensor have during the
simulation but also all the relationships between sensor and effectors. The design of this subsystem greatly
affects how accurate our simulation will be.

Messages

As BusSim should be a replacement for BusAgent, it should logically also receive and send the same messages
as BusAgent does. These messages are : setproperty and property update. See chapter 10.2 for more details
about these messages.

Implementation

As mentioned before the design of this agent greatly affects the precision of the simulation. A simple approach
for such a simulation is to see the building network as a group of variables and certain connections between
different variables. An example for such a connection would be between a light switch and the actual light.
Whenever the light switch’s state changes, the light’s state should also change. When and how this state
changes can mostly be described by some simple rules.

variable
0..* 1..*

Connection Mapping

name target

Figure 10.3: Relationship between Variables/Connections/Mappings

We actually went this way and first designed an XML-Grammar to describe such a simulation see listing
C.1. This grammar consist of 5 constructs :

• ahaSim
Top level construct, contains several devices

• Device
A simple construct to group variables which belong to the same device, is child of ahaSim

• Variable
A variable with the following attributes : name, id, default and comment. Name being the internal
name for the simulation and id being the numerical id which is also known to the clients of BusSim.
See chapter 10.3

• Connection
Connections show which other variables are affected by changes to a certain variable. Connections are

51

10.4. SIMULATOR AGENTS CHAPTER 10. AGENTS

always children of variables. The attribute target points to the target variable, the internal name is
used. To enhance the power and expressiveness of the configuration language regular expressions can
be used for the names of connection targets.

• Mapping
The Mappings describe how a connections target should be affected. See more below.

Mappings are the most complex of these constructs. Thus they deserve their own paragraph. A connection
may always have more but at least one mapping. See figure 10.3 for an illustration of the relationship between
these concepts. It’s attributes can be divided in two groups. The condition and action attributes. The
attributes belonging to the first group are cmp and value. These two attributes specify when that mapping,
resp. it’s action should executed. The attribute value is a simple string which is somehow compared to the
actual value of the mappings parent variable.

Listing 10.2: Extract a config file for a simulation

<dev i ce room=”4154 ” name=”Y355G−4154 −UPL LT C”>
<v a r i a b l e name=”Y355G−4154 −UPL LT C . nvoSett ing [2] . 2 ” id =”19” d e f a u l t=”

SET OFF 0 .0 0 . 00”>
<connect ion t a r g e t =”.∗−4154 −PHI LRC C . n v i 0 1 0 2 i r S e t t i n g .14”>

<mapping cmp=”conta in s ” value=”SET OFF” ac t i on=”s e t”>
SET OFF 0 . 0 0 . 0 0

</mapping>
<mapping cmp=”conta in s ” value=”SET ON” act i on=”s e t”>

SET ON 0 . 0 0 . 0 0
</mapping>

</connect ion>
</v a r i a b l e>
<v a r i a b l e name=”Y355G−4154 −UPL LT C . nvoSett ing [3] . 3 ” id =”20” d e f a u l t=”

SET OFF 0 .0 0 . 00”>
<connect ion t a r g e t =”.∗−4154 −PHI LRC C . n v i 0 1 0 2 i r S e t t i n g .15”>

<mapping cmp=”conta in s ” value=”SET OFF” ac t i on=”s e t”>
SET OFF 0 . 0 0 . 0 0

</mapping>
<mapping cmp=”conta in s ” value=”SET ON” act i on=”s e t”>

SET ON 0 . 0 0 . 0 0
</mapping>

</connect ion>
</v a r i a b l e>

</dev i ce>

The other two attributes specify what should be done whenever the variable value changes and this mapping
is responsible.

The actions are more or less self-explanatory. But two of the supported actions are more complicated and
shall be explained here. These two actions are needed to simulate the behavior of the daylight sensor. Its
behavior is a not very simple since it also involves the state of other variables.

filter : This action adds a new filter to a variable. A filter amplifies or lessens another variables value. It
consists of a source variable and the filters value.The filter concept is used for every update of a variable.
Whenever the variable needs to be updated the filter is applied. The source variables value is loaded,
multiplied with the filter value and stored in the target variable.

Listing 10.3: example config for a variable filter

<v a r i a b l e name=”Y455G−4154 −MS STA G29−30. n v i S e t t i n g L c l . 1 2 ” id =”24” d e f a u l t=”SET OFF
0 .0 0 . 00”>

<connect ion t a r g e t =”.∗−4154 −HTS ECO. nvoDaylightLux .5”>
<mapping cmp=”conta in s ” value=”SET OFF” ac t i on=” f i l t e r ”>

Y355G−41 −GRELLOW. nvoG91 080MB1 . 3 0 , 0 . 4
</mapping>

52

CHAPTER 10. AGENTS 10.4. SIMULATOR AGENTS

<mapping cmp=”conta in s ” value=”SET ON” act i on=” f i l t e r ”>
Y355G−41 −GRELLOW. nvoG91 080MB1 .30 ,−0 .4

</mapping>
</connect ion>

</v a r i a b l e>

Listing 10.3 shows an example how a filter is configured. Here we have a filter which adds or subtracts 0.4
to the daylights filter filter value whenever the blinds are down or up. This reflects the fact that it is darker
when the blinds are down. It is also possible that several variables can change another variables filter value.

update Update is used to make a variable with filters update its value. This action should be used whenever
the source of a variables filter changes its value.

Listing 10.4: example config for an update action

<v a r i a b l e name=”Y355G−41 −GRELLOW. nvoG91 080MB1 . 3 0 ” id =”115” d e f a u l t=”7”>
<connect ion t a r g e t =”.∗−HTS ECO. ∗ \ \ . nvoDaylightLux .5”>

<mapping cmp=”” value =”” ac t i on=”update”>
</mapping>

</connect ion>
</v a r i a b l e>

Listing 10.4 shows an example of update. Whenever the exterior illumination changes, all the daylight
sensors in the building should be updated. This is also a nice example for the usage of regular expressions.
The Pattern .*-HTS ECO.*\.nvoDaylightLux.5 matches to all daylight sensors in the building. We thus
have a connection from GRELLOW to every daylight sensor in the building. Now always when illuminance
changes all the daylight sensors are updated.

timed events
The building we were working with provided us with some exterior sensors like temperature, illumination,
humidity etc. These are sensors which just change all over the day. We simulate these by simple repeating
values we have sampled form a real system. In the top-level tag of the simulation config file one can specify
a file containing a list of sampled data, see listing 10.5. Upon start of the simulation this data is sent to
Simulator Agent who sends according SET PROPERTY messages at the right time.

Listing 10.5: example reference to timed events

<ahaSim timedEventsFi le=”examples / weatherdata .20020616” startTime
=”2002−06−16 00:00:00”>

. . .
</ahaSim>

Listing 10.6: example for the list of timed events

Y355G−41 −GRELLOW. nvoG91 080MB1 .30 ,2002−06−16 00 :00 :22 ,7
Y355G−41 −GRELLOW. nvoG91 080MB1 .30 ,2002−06−16 04 :42 :35 ,9
Y355G−41 −GRELLOW. nvoG91 080MB1 .30 ,2002−06−16 05 :14 :31 ,31
Y355G−41 −GRELLOW. nvoG91 080MB1 .30 ,2002−06−16 05 :27 :10 ,53

The implementation (which is in package aha.sim) is structured into classes as following:

• BusSim: receives messages and manages the variable values

• Connection: models the connection between variables

• Mapping : models the mappings (triggers and actions)

53

10.4. SIMULATOR AGENTS CHAPTER 10. AGENTS

10.4.2 Simulator Agent - Control of simulation time

Functionality

Simulator Agent is responsible for the control of the whole simulation. It start, stops and pauses the
simulation. It controls the simulation time and manages the timed events.

Messages

The following messages received by Simulator Agent control the simulation :

• SIMULATION RUN switches the simulation between running and paused forth and back

• SIMULATION STOP stops the simulation completely, another message SIMULATION RUN is needed
to restart the simulation

• SIMULATION SET DELAY sets the simulation speed, specifies how many milliseconds the simulator
agent should sleep before advancing to the next simulation second

The message TIME EVENT adds another timed event to the pending event queue. The message contains
another message which is sent to its designated receiver when the specified amount of seconds have passed.

Simulator Agent sends the message TIME, which is the actual simulation time, every 10 simulation seconds.
This message is sent to the topic time. Agents interested in the actual time should thus subscribe for that
topic instead of reading the local system time.

Implementation

The simulation of time is achieved by using Able’s TimerEvent mechanism. Able calls the method pro-
cessTimerEvent every n seconds. Where n is specified calling the method setDelay. This call is done
whenever Simulator Agent receives the SIMULATION SET DELAY message.

Simulator Agent has an ordered map which stores all the timed events. These timed events are stored in
instances of the class WakeUpEvent. Every time when the simulated time is advanced Simulator Agent
checks if there are any expired WakeUpEvents and sends them to their receiver.

The implementation (which is in package aha.sim) is structured into classes as following:

• SimulatorImpl : The Simulator Agent, the postfix Impl is a historical leftover from when we still used
RMI to control Simulator Agent

• WakeUpEvent : stores a timed event and knows how to send it

54

CHAPTER 10. AGENTS 10.4. SIMULATOR AGENTS

Figure 10.4: UML class diagram of the simulation agents (simulation,bussim, artificial persons)

55

10.5. CONTROL AGENT CHAPTER 10. AGENTS

10.5 Control Agent

10.5.1 Functionality

The control agent is responsible for controlling a single room (which is represented by a cluster in the
structure information as communicated by the structure agent). It controls all effectors of a single room and
declares it’s interest in all sensory input data values available for the room it controls. Depending on the
number of subclusters of one room it instanciates a number of learning units and models on which basis it
generates punishment and reward reinforcement signals for the learning processes. It uses the dynamically
generated rules generated by the learning process for taking decisions.

All structure information used by the control agent is request by it from the structure agent. A room
is typically divided into a number of light clusters and a number of blind clusters (see Figure 9.2 for an
example). A light cluster contains all light switches and light control units which are connected together
(eg the same switch turnes on several lights) whereas a blind cluster contains all blind controllers and blind
switches which are connected together. This subclusters are the basic units on basis of which rulebases are
learnt. Additionally, at least one presence detector is assigned to every subcluster.

The specific structure of such a subcluster is different for every room and is managed by the structure agent.

10.5.2 Messages

The control agent sends the following types of messages:

• ANNOUNCE RULE: ARL string of all rules currently used for processing. Is sent out every time the
rulebase changes.

• GET ELEMENTS: last subscription for a topic was removed, no one is interested in this topic anymore.

• SET PROPERTY: sent to bus agent to interact with the environment (effectors).

• GET PROPERTY: sent to bus agent to request a value of variable currently not available.

• GET ELEMENTS: sent to structure agent to dynamically discover structure information.

• SUBSCRIBE INTEREST: to declare a new interest to the distribution agent

• DESUBSCRIBE INTEREST: to declare that the control agent is not interested in a topic anymore.

The distribution agent accepts this types of messages:

• VARIABLE UPDATE: Update of a value for a variable.

• GET ELEMENTS RESULT: Answer to structure information request message.

10.5.3 Implementation

Figure 10.5 shows the UML class diagram of the control agent itself, figure 10.6 the diagram of all class
representing the structure and relationships of a room and figure 10.7 all classes related to learning.

The implementation (which is in package aha.control) is structured into classes as following:

• Room: Represents a whole room, consisting of a recursive structure of subclusters and elements as
obtained from the structure agent.

56

CHAPTER 10. AGENTS 10.5. CONTROL AGENT

• RoomControlAgent : The control agent itself. Receives messages and forwards them to the respective
instances for processing.

• ControlSupport : Various static support methods for converting data (like time).

• SubCluster : Subcluster, consisting of a number of learning units and a number of presence detectors.

• Presence: Determines for every subcluster the presence status (yes/no). Runs in it’s own thread.

• PresenceMovement : ElementGroup. Manages a number of presence movement input values (aquired
from presence detector). Processes incoming messages that contain data updates for presence move-
ment variables.

• PresenceLight : ElementGroup. Manages a number of presence light values (aquired from presence
detectors). Takes average/max values in case there is more then one presence detector assigned to this
group. Processes incoming messages that contain data updates for presence light variables.

• Weather : Group of all weather variables. Processes incoming messages that contain data updates for
weather variables.

• LightSwitches: Group of light switches. Forwards incoming messages to the respective reinforcement
generator for generating punishments.

• BlindSwitches: Group of blind switches. Forwards incoming messages to the respective reinforcement
generator for generating punishments.

• InputGroup: Group of input variables (sensors).

• ElementGroup: Group of any variables (input and output).

• OutputGroup: Group of output variables (effectors).

• Blinds: Group of blinds (output). Supports methods like allUp and allDown.

• Lights: Group of lights (output). Supports methods like allOf and allOn.

• Inputs: Static definitions of various constants valid for the whole control agent.

• Learner : Runs in it’s own threads. Collects punishments and rewards from the reinforcement genera-
tors and runs the incremental learning. Updates the rulebase.

• LearningUnit : Generic learning unit. Represents a single model and a single rulebase.

• LearningUnitBlinds: Blinds specific learning unit. Takes decisions about blinds and executes them.

• LearningUnitLight : Lights specific learning unit. Takes decisions about lights and executes them.

• ReinforcementGeneratorLight : Runs in it’s own thread. Evaluates goal function and generates pun-
ishments and rewards.

• ReinforcementGeneratorBlinds: Runs in it’s own thread. Evaluates goal function and generates pun-
ishments and rewards.

As shown in Figure 10.6 every elementtype of a building (light, lightswitch, etc.) is represented by a single
class that inherits from ElementGroup. Every kind of elementgroup manages all sensors/effectors of the
same type.

The present detector is a special case: It’s raw values are managed by the ElementGroup subclasses Presence-
Movement and PresenceLight but there is an additional class Presence. Methods of this class are constantly
running in an own thread. This thread uses the raw values of the presence detectors to infere whether there is
a person present or not. This information is not directly available from the presence detector as the presence
detector is only delivery a value when there is a change of movement and not when there is no movement at
all.

57

10.5. CONTROL AGENT CHAPTER 10. AGENTS

Figure 10.5: UML class diagram of the control agent (Agent itself, part 1)

Threads of either type ReinforcementGeneratorLight or ReinforcementGeneratorBlinds are running for ev-
ery learning unit. The reinforcement generator threads have fix coded goal functions that are constantly
evaluated. In case a certain goal isn’t met anymore (like light needs to be off when there is noone present)
a punishment is sent to the learning unit to which the particular effector is connected.

For every learning unit there is also a Thread of type Learner. This thread deals with incoming rewards
and punishments and feeds them to the learning process and adapts the underlying rulebase. The learning
happens in it’s own thread to make sure that learning and decision making can happen at the same time.

58

CHAPTER 10. AGENTS 10.5. CONTROL AGENT

Figure 10.6: UML class diagram of the control agent (Elements, part 2)

59

10.5. CONTROL AGENT CHAPTER 10. AGENTS

Figure 10.7: UML class diagram of the control agent (Learning, part 3)

60

CHAPTER 10. AGENTS 10.6. DISTRIBUTION AGENT

10.6 Distribution Agent

10.6.1 Functionality

The distribution agent is responsible for distributing arbitrary messages to other agents. It distributes this
messages according to the declared interests of all other agents present in the MAS. All agents that are
interested in some kind of message declare this interest towards the distribution agent which stores this
interests in a internal data structure. An agent that wants to distribute a message according to an interest
just sends this message together with the type of interest to the distribution agent and the distribution agent
than takes over the job of actually distributing the message.

Message distribution in a multi-agent environment is complex because of a number of reasons:

1. Interests: Every agent is interested in different kinds of messages. Interests of agents constantly change.

2. Communication: Because agents could possibly be distributed physically, some agents my become
unreachable because of communication failures. Communication between agents could be prone to
failure or be slow.

3. no unregister :When an agent gets stopped for some reason it usually doesn’t care about interests it
still has registered with other agents. Such invalid subscriptions for non-existing agents need to be
removed automatically.

The distribution agent uses a large pool of threads to distribute many messages in parallel. Every message
for every destination is assigned to it’s own thread so that even the same message is sent out in parallel.

The subscription list (which agent is interested in which messages) is constantly updated by the distribution
agent. In case an agent with an active subscription can’t be reached for whatever reason the distribution
agent automatically unsubscribes it.

Every type of message possible in the system is identified by a system wide unique identifier. Interests
are managed in terms of this identifiers (which agent is interested in which identifier). Every message in
the system is marked with this identifier so every agent nows at every time what type of message it just
received/sent.

There are different types of type of messages (interests). The type of message is included in the message
type name with a prefix that precedes every message type name.

The special prefix var denotes a message that is being generated externally by the sensor network. Every
time the first agent declares an interest for such a variable towards the distribution agent, the distribution
agent notifies the bus agent. The bus agent in turn subscribes to this message with the sensor network and
forwards incoming updates directly to the distribution agent for later distribution to all interested agents.

Whenever the last agent de-subscribes to a type of message the distribution agent notifies the bus agent, so
that the bus agent can de-subscribe the interest with the sensor network as well.

A type of message is called a Topic in the following definition of messages.

The distribution agent is a service agent. In a JAS platform there is usually just one instance of the
distribution agent running.

10.6.2 Messages

The distribution agent sends the following types of messages:

• TOPIC CREATE: first subscription for a topic, at least one agent is from now on interested in this
topic.

61

10.6. DISTRIBUTION AGENT CHAPTER 10. AGENTS

• TOPIC REMOVE: last subscription for a topic was removed, no one is interested in this topic anymore.

• arbitrary types of messages: Messages that the distribution agent distributes as substitute for other
agents.

The distribution agent accepts this types of messages:

• DISTRIBUTE MESSAGE: tells the distribution agent to distribute the encapsulated message accord-
ing to it’s interests list.

10.6.3 Implementation

Figure 10.8 shows the most important classes and their relationships.

Figure 10.8: UML class diagram of the distribution agent

The implementation (which is in package aha.messaging) is structured into classes as following:

• ThreadPool : Threadpool that manages the asynchronous message delivery.

• ThreadPoolWorker : A single, runnable, class which task it is to distribute a single message to a single
destination. After doing this job it stops.

• MessageDistributionAgent : The message distribution agent that manages the threadpool and the in-
terests mapping list.

• MessagingSupport : A support class that offers various static methods for supporting message delivery
for other agents.

• Constants: static constants for all system wide unique message id’s and topic names.

62

CHAPTER 10. AGENTS 10.7. BUILDINGVIEWER AGENT

10.7 BuildingViewer Agent

10.7.1 Functionality

This Agent visualizes what is happening in a building. But it allows one also to control a simulation if one
is running. It is meant to let one to interact with our system in an visually more appealing way than just a
command line interface.

Figure 10.9: Simulation of BuildingViewer Agent

The building viewer UI mainly consits of the following elements : toolbar, floor view, weather data and the
statusbar.

Toolbar

Except of the first one, all controls in the toolbar allow us to control the simulation. These controlls are
disabled when there is no use for them.

• moon : closes the building viewer

• play : starts / pauses the simulation.

• stop : stops the simulation

• slider : controlls the speed of simulation time

• time : shows the actual time in the simulation

Floorview

The Floorview gives an overview of the actual state of a whole floor/building. It uses 3 different icons to
illustrate the state of a room. Light bulb, Moon and gnome. A light bulb means one or more lights in that

63

10.7. BUILDINGVIEWER AGENT CHAPTER 10. AGENTS

room are switched on. A Moon means the blinds are down and a gnome shows that at least one person is
present in the room. A double click on a room in the Floorview opens a window displaying all variables of
that room.

WeatherData

Below the Floorview, BuildingViewer shows a list of variables and their values. These variables are external
weather data delivered from the Grellow device.

10.7.2 Messages

Since BuildingViewer is an important interface to the whole abi system, one would expect it to listen and
send many different messages. Actually it communicates only with 4 other agents. These are :

• SimulatorAgent for the simulation control

• StructureAgent to find the blinds, lights, weatherData etc.

• BusSim to be notified when to observed variables change

• PersonLocatorAgent to be notified when person enter/leave

The received messages are :

• GET ELEMENTS RESULT

• VARIABLE UPDATE

• PERSON ENTERED

• PERSON LEFT

• TIME

And the messages sent are :

• SIMULATION RUN

• SIMULATION STOP

• SIMULATION SET DELAY

• SET PROPERTY

• GET PROPERTY

• GET ELEMENTS

10.7.3 Implementation

BuildingViewer is implemented using the Java Swing toolkit. It reads an image displaying the floor, resp.
all the floors of a building. It reads a configuration file which specifies the coordinates of the different rooms
in the image. The image is displayed using the component FloorView which inherits from JPanel. Since
FloorView shows the status of the lights and blinds in every room, BuildingViewer needs to subscribe for
variable changes of all lights and blinds in the building.

64

CHAPTER 10. AGENTS 10.7. BUILDINGVIEWER AGENT

To display the variables in a room, the component RoomView, which is also a JPanel, is used. RoomView
contains a JTable to display the variables of a room. It uses VariableTableModel as the DataModel. While
a RoomView is displayed BuildingViewer is subscribed to VARIABLE UPDATES for all variables in that
room and unsubscribes as soon as this RoomView is closed.

Figure 10.10: UML class diagram of the BuildingView agent

The implementation (which is in package aha.sim) is structured into classes as following:

• SwingSimulator : The BuildingViewer, class name is a historical leftover

• FloorView : JPanel based component to display the building

• RoomView : Component to display a rooms variables

• VariableTableModel : Data model to hold a rooms variable data

65

10.8. PERSON LOCATOR AGENT CHAPTER 10. AGENTS

10.8 Person Locator Agent

10.8.1 Functionality

This agents informs about person locations in the buildings different rooms. It is the implementation used
for the Bluetooth person localization further described in chapter 11.1

10.8.2 Messages

This agent does only listen to GET ELEMENTS RESULT. It uses these messages to respond to GET ELEMENTS
to discover the top level clusters for the rooms.

PersonLocator sends the messages PERSON ENTERED and PERSON LEFT to inform other agents when
persons have left or entered a certain room resp. cluster.

10.8.3 Implementation

Since this is a pretty simple agent it consist only of one class for the agent itself. The HttpServlet WebLocator
is described in chapter 11.1.2. The agent reads two property files device2person and ip2room, which map de-
vice ids to persons and the Bluetooth access points IP to the room. The room is a string which is used to look
up the corresponding cluster Id, which is discovered by GET ELEMENTS and GET ELEMENTS RESULT,
issued when the agent is initialized.

Figure 10.11: UML class diagram of the locator agent

66

CHAPTER 10. AGENTS 10.9. VIRTUAL PERSON AGENT

10.9 Virtual Person Agent

10.9.1 Functionality

In a simulated building environment we are not able to use PersonLocater since there are no persons with
their Bluetooth enabled PDAs walking around a simulated building. This agent is responsible to simulate
virtual persons.

10.9.2 Messages

This agent sends the messages PERSON ENTERED and PERSON LEFT to inform other agents when
persons have left or entered a certain room resp. cluster. It also simulates their behaviour, like switching on
the light when it is too dark or pulling up the blinds.

10.9.3 Implementation

Virtual Person Agent reads a configuration file which describes the persons it should simulate. The Persons
are simulated following a probablistic approach. This file uses the grammar described in listing C.2 an
example can be seen in listing C.3.

An instance of Person is created for every person found in the config file. This class is regularly asked to
change the room. It uses the roullet wheel selection algorithm to determine which room to visit. Every
person also has a start and end time, these are the times when they start or stop working, thus they leave
the building.

Figure 10.12: UML class diagram of the locator agent

67

Chapter 11

Personalization

11.1 Person Tracking – Bluetooth

Based on the fact that devices enabled for Bluetooth are coming to mass market more and more, using
Bluetooth seems to be a reasonable approach. According to many different sources [ZDN], [INS], citeBBC
a big majority of working people in western europe posseses a mobile phone. More and more these mobile
phones are equipped with Bluetooth chips. It is thus reasonable to that we’ll be able to detect presence of
persons in a room over their personal Bluetooth device (Mobile Phone, PDA, etc.).

When trying to locate people over Bluetooth several problems arise. Some of these are:

• no roaming between base stations. see [blua] and [blub]

• overlapping Bluetooth clouds

• increased energy consumption when using Bluetooth extensively

We didn’t deal with this problems. We are of the opinion that they will be solved in the future be solved in
the future by developers of Bluetooth hardware. Instead we want to implement a prototype using a Palm
handheld and several Bluetooth LAN access points. See figure 11.1.

The Prototype consist of two parts :

• Palm Bluetooth browser and web client

• Java Servlet and PersonLocator Agent

The Program on the mobile device discovers all reachable Bluetooth LAN Access Points, chooses one,
connects to it and sends a HTTP GET to the Servlet. The Servlet passes the information on to the
PersonLocator Agent, who informs all other Agents using the MessageDistribution mechanism described in
10.1.

11.1.1 Mobile Device Program

The client on the mobile device is a simple application which needs some user interaction. A more sophisti-
cated application could be developed which would work with any user interaction.

After starting the application an panel with a button is presented to the user. See figure 11.2. With a click
on this button the Bluetooth device discovery is started. The Palm device searches for all LAN Access Points

68

CHAPTER 11. PERSONALIZATION 11.1. PERSON TRACKING – BLUETOOTH

Mobile Device

LAN Access LAN Access LAN Access

Servlet

PersonLocator

Agent

Figure 11.1: Architecture of our Bluetooth prototype

Figure 11.2: Screenshot of main window

in its neighborhood. A list of all devices found is presented to the user. See figure 11.3. After choosing one
of the devices a network connection is built up and a HTTP GET request to the person localization servlet
is issued. Part of this request is the Palm’s RoomId which uniqueliy identifies the Palm device.

After this the application should be closed and the Network connection disconnected.

Please see the source code in CVS (src/palm/Src/INetLow.c) on how this prototype is realized. It is written
in C and uses several Palm Libraries. The Bluetooth library is used for the device discovery. To issue the
HTTP request we use Palms INetLib. This library does also the automatic connection to the Access Point.

11.1.2 Server side

The server side consists of a servlet running in a Tomcat 4.1 application server (but there are not limitations
concerning an other application server). This servlet instanciates the PersonLocator and passes roomId,
personId and RemoteIP to it whenever it recieves a request.

The remoteIP is a simple way to know which room a person is presently visiting. Since we have an access
point in every room and these access points are doing NAT, we can use the access points IP as a hint to

69

11.1. PERSON TRACKING – BLUETOOTH CHAPTER 11. PERSONALIZATION

Figure 11.3: Screenshot of access point choice

from which room this request is comming. The client thus only has to pass the deviceId.

70

Chapter 12

System Configuration

Over time the configuration of ABI got more and more complex. Here we shall give an overview on the
environement variables and the config files with appropriate pointers to chapters with a more detailed
description.

12.1 Envrionment Variables

The follwing two Environment variables must all be set for the correct startup of any ABI process :

• AHA HOME path to the aha home directory

• ABLE HOME path to the able home directory

12.2 Config Files

ABI relies on the presence of one main configuration file, .ahaConfig. This file is read by the global con-
figuration class aha.Config. The files entries are mostly pointers to the location of the agents configuration
files.

Listing 12.1: Extract a config file for a simulation

#Global JAS c o n f i g u r a t i o n
JASKernelServerIP=squat t e r . a l a n i . ch
JASKernelServerPort =55551

#Bus Agent
BusContro l l e r=aha . bus . lonworks . LNSControl ler
busVariableMapping=c o n f i g / INITestLonworks . xml

#LNS C o n t r o l l e r
lonBusIP =130.60 .71 .231
lonBusPort=2540

#Adaptive Control Agent
ru l eD i r=/s r c /aha/ r u l e s / r u l e F i l e s
l e a r n i n g S t a t e S t o r ag e=/s t a t e

#BusSim Agent
simConfig=c o n f i g / INITestSimulat ion . xml

71

12.2. CONFIG FILES CHAPTER 12. SYSTEM CONFIGURATION

#Structure Agent
s t ruc tu r eCon f i g=c o n f i g / INITestStructure . xml

#Vi r tua l Person Locator
personConf ig=TwoPersons . xml

#Bluetooth Person l o c a t o r
dev i ce2per son=/c o n f i g / dev i ce2per son
ip2room=/c o n f i g / ip2room

variable Description Details
busVariableMapping Mapping between real variable names and artificial

ids
Chapter 10.2

learningStateStorage Directory where ControllAgent stores it’s memory
(learning state)

Chapter 10.5

simConfig Configuration of the field bus simulation Chapter 10.4.1
structureConfig Structure information about the building Chapter 10.3
personConfig Virtual Persons simulated in the building Chapter 10.9
device2person Mapping from Palm device id to person id Chapter 10.8
busVariableMapping Mapping between real variable names and artificial

ids
Chapter 10.2

72

Part IV

Results and future work

73

Chapter 13

Results

The evaluation of the project is distributed among two different chapters. This chapter evaluates what has
been achieved during the present project so far whereas the next chapter (chapter 14) evaluates the project
in a broader context. It also gives an idea of where research in intelligent buildings may possibly head to in
the future.

13.1 Evaluation

ABI proves that it is possible to make a building intelligent. We deployed ABI in an a commercial building
which is used daily. The system is capable of adapting itself continuously to the users of the building. ABI
not only proves that it is possible to develop and deploy such a system but it also shows that such a system
isn’t computationally expensive. Actual computation required to control a building is minimal. This is due
to the highly distributed architecture that emphasizes localized decision making and control.

13.2 Architecture

All software developed was focused on the architectural decision to regard the system as a multi-agent
system. This proved to be feasible. The multi-agent system enabled us to develop many agents. Each of
these agents is very specialized and thus small and focused. This greatly sped up development speed and
efficiency and it also increases the systems stability. The system can even fulfill it’s task (as least partially)
if some of the agents aren’t working anymore because of a system failure or communication problems.

Although over the whole development phase the application domain stayed the same we decided not to
assume any structure or relationships between sensors and effectors during development. We wanted to
abstract all these data such that no agent needs to make any assumptions about it’s environment. Our
solutions to tackle this requirement is the structure agent. The structure agent is the only agent that knows
about the structure of the specific environment. This includes all sensor/effector relationships as well as the
relationship between static structures (rooms, floors) and dynamic structures (people, sensors, effectors).
This architecture proved to be a very good starting point. All agents request their structure information
from this central structure information point. If the system needs to be deployed in some new environment
or the existing environment changes (for example some new sensors get added) there is only one place where
this new information needs to be incorporated (the structure agent). As of today the structure agent uses
static configuration files (XML files) to get it’s information. In the future this agent could be enhanced
such that it discovers it’s structure information and all sensor/effector relationship itself with some self
organization algorithm.

An other very successful architectural decision was the decision to abstract the actual fieldbus (sensor

75

13.2. ARCHITECTURE CHAPTER 13. RESULTS

network) from the rest of the system. There is no agent that knows anything about the fieldbus except
for the bus agent. The bus agent converts all messages from the fieldbus into ordinary JAS messages and
forwards them to the distribution agent for distribution to all the other agents. Writing values works the
other way round: An agent that wants to send some value to an effector just sends a variable update to
the bus agent and the bus agent converts this request to the required special format of the fieldbus. This
architecture also allows it to use the same system for different kinds of fieldbus types (like lonworks or EIB).
The only agent that needs to be changed in this case is the busagent.

13.2.1 Messaging

In contrast to the former projects [RS02] and [EBB+02] all communication between agents in ABI is done
with messages. There are no synchronous method calls between agents whatsoever. This has advantages
and disadvantages. The major advantage is that it makes the agents completely decoupled. There is no
dependency between the internal structure of the agents whatsoever. The only common thing between
agents is the definition of the messages (identification and structure of payload). An other advantage is that
a system that is only coupled by (asynchronous) messaging is much more stable and resistant to failure.
Agents can easily be re-started, shutdown or restarted during runtime without influencing other agents.
Partial communication problems between agents only affect the agents affected by the problem and not the
whole system.

The major disadvantage is that development of such agents is very different from traditional software devel-
opment and thus more complex. In such agents there is no consistent execution flow as in agents that make
synchronous system calls to each other. The program flow is consistently interrupted (send out message)
and continued at an other point in the program where incoming messages are processed (receive answer to
message). All kinds of difficult concurrency issues arise due to the highly parallel and multi-threaded nature
of such agents.

Despite the drawbacks the decision to use asynchronous messaging for interagent communication proved to
be a very good one. Once one gets accustomed to the different way of developing such a system it actually
becomes second nature and one can develop just as one would develop a agent that uses synchronous method
calls. The many advantages of asynchronous messaging clearly outweight the disadvantages. Such a system
is completely decoupled and very resistant to failure and changes during runtime.

An additional property of our system is the interest based messaging. To tackle the problem that every agent
in such a system is just interested in receiving a small subset of all available type of messages we introduced an
additional agent that takes over the responsibility to distribute messages according to interests. Every agent
that wants to receive messages declares it’s interests towards this agent and every agent that wants to send
out a message delegates this task to the distribution agent. This architecture minimizes the communication
and processing overhead for agents considerably.

13.2.2 Simulation

The simulation was the first task we started to develop. We thought it was a requirement to develop and
test the adaptive control agents. First we also thought that it will be a quick job to develop this simulation.
And surprisingly it was one! A first prototype was quickly developed. The requirements for the simulation
were changing all the time. And because our time frame was very limited we sometimes didn’t do enough
refactoring, thus the software design of the simulation might look a bit awkward.

A few behaviors of the field bus were really difficult to simulate. Especially the daylight sensors behavior
turned out to be difficult to approximate, because it does not only depend on state of the blind variables in
the same room, but it is also a non linear function of the exterior illumination.

We think we have achieved a working and close enough approximation of a real building. And it turned
out to be really useful for developing the adaptive agents. Many problems we would have faced later when
developing the adaptive agents turned up during development of the simulation and the UI and thus were

76

CHAPTER 13. RESULTS 13.3. LEARNING AND INFERENCING

not a problem anymore for the later development. It allowed us thus to concentrate more on the adaptive
part of the agents.

13.2.3 JAS

We decided to build our multi-agent system on top of a JAS ([FLoA02]) compliant platform (ABLE, see
[ABL]). The standard services offered by a JAS platform (agent directory, agent naming, message transport
system) proved to be very useful for the development of a multi-agent system. It allows to develop such a
system on a much more abstract level because one doesn’t have to deal with problems like how to discover
other agents or how to send a message to an other agent. The JAS specification, however, doesn’t include
any standard for lifecycle management. This is due to reasons explained in chapter 5. Some kind of
lifecycle management service is absolutely necessary to build a multi-agent system. We used the proprietary
implementation of ABLE ([ABL]) for our system.

What the JAS specification, and thus the JAS compliant implementation of ABLE as well, doesn’t provide
is asynchronous messaging. This needs to be implemented by the multi-agent system builder itself. We
implemented this by using a large threadpool inside of the distribution agent.

JAS, and the JAS compliant implementation ABLE, was very helpful to develop ABI. It freed us of the need
to develop standard services like the lifecycle service or an agent directory service.

13.3 Learning and inferencing

The learning algorithm described uses very simple principles of fuzzy logic inferencing and set theory to
automatically learn a maximal structure fuzzy rule base. Although the algorithm is built on the basis
of very simple principles it’s performance is excellent which once more proves the powerfulness of simple
algorithms.

The algorithm is specifically designed to run in an continuously changing environment. It is an anytime
learning algorithm that is a capable of changing it’s believes according to the changing environments. Believes
held to be true don’t necessarily have to be true in the future. The algorithm is capable of detecting such
changes and eliminates conflicts within the rulebase that arise from such changes.

Learning in terms of learning units allows it to learn a great number of very limited and small rulebases.
The parallel learning of many such small rulebases ensures minimal computational complexity and fast
convergence at the same time. The design decision to split up the whole state space into many small units
to emphasize localized decision making and control proved to be justified; It made the system must leaner
in terms of required computation.

The emphasize on non-explicit user interaction proved to be very successful. Users don’t wish to interact with
a building explicitly. They just want the building to adapt to the preferences of the users as expressed with
their actions. Our learning algorithm takes the input values available from the sensors and automatically
generates punishment/reward reinforcement signals for the learning algorithm.

Fuzzy logic and fuzzy inferencing as the basic mechanisms for decision making allows it to deal with imprecise
input data and noise. In our specific case the use of fuzzy input variables also allowed it to greatly reduce the
dimensionality of the state space of the system. Instead of a real valued input variable there is just a fuzzy
variable that can be set to a finite number (and typically very small) number of fuzzy states accompanied
by a truth value.

Learning in terms of fuzzy sets and variables allows it to deal with a problem on a much higher level of
abstraction than real valued input would allow it. Learned fuzzy logic rules formulate knowledge of the
system on a very high level that also holds truth for imprecise inputs and noise in the system.

We believe that the use of fuzzy logic rules was one of the most important decisions taken. Learning in such
a system without using fuzzy logic would have been much more complex if not impossible.

77

13.4. PERSONALIZATION CHAPTER 13. RESULTS

13.4 Personalization

The development of a prototype for tracking persons via Bluetooth did not work as smooth as we expected.
At a first look Bluetooth looks rellay suitable for that task. After a closer look at how Bluetooth works and
what can be done with the stack we were not sure about that any more.

The prototype we developed (see chapter 11) allows the tracking of persons via Bluetooth. But it has
several limitations. First it requires manual iteraction from the user. A better solution should work fully
automatic. Two steps now require manual interaction. The start of inquiry and the choice of which access
point to connect to. The first one could easily be automated. A new inquiry could be done whenever the
connection goes down, or every n minutes. It just needs to be considered that the Bluetooth inquiry process
has a high power consumption. The choice of which access point to connect to could be decided depending
on the quality of the signal. Although such a function to get the signal quality exists in the the Bluetooth
standard (see [bluc]) we could not figure out how to do that with the Palm SDK.

Then we faced also some issues with the development language. Programming in C again after having been
programming in Java was a bit difficult. And the documentation for the Palm SDK was sometimes really
sparse (especially the documentation of the Bluetooth SDK part).

78

Chapter 14

Future

This chapter deals with possible future extensions of ABI and the future of research in building intelligence
in general.

14.1 Learning and inferencing

The learning algorithm in use could be enhanced in various ways. We think that the current algorithm could
be a good basis to future expand it’s capabilities. Features that could be introduced or improved are:

• Policy transfer between learning units

• improved algorithm by using more complex amplification method (powersets and not linear expansion
of sets)

• learn individual preferences

• make learning probabilistic such that a ruleset only has to be consistent to a certain degree (not like
now whereas there is always 100% consistency)

• count rewards/punishments and act only after a certain threshold of number of punishments/rewards.
Don’t react immediately (as it is now) to every reward/punishment.

• optimize implementation of the algorithm by using a fast java math library to replace all operations
carried out on sets.

What would also be a very interesting and challenging task is to make the membership functions of the
different fuzzy sets stochastic in itself. Adding a stochastic term to the definition of a fuzzy set would make
the representation of fuzzy concepts like cold or warm more realistic as there borders would be really fuzzy
(stochastic) and different every time. A good starting point would be to try gaussian noise.

14.2 Structure information

In the current system the structure agent is the single point where all information about the structure of the
system originates. It retrieves this information form human-edited XML files. This agent could in a future
release be replaced by a much more enhanced agent that uses self-organization algorithms to dynamically
learn about the structure (and especially the sensor/effector relationships). This would be particularly
interesting in very complex building environments that change frequently like flexible office space that is
already in use in modern commercial buildings. Learning the structure rather then statically define it would
add an other layer of learning to the system which would make it even more flexible and adaptive to change.

79

14.3. PERSONALIZATION CHAPTER 14. FUTURE

14.3 Personalization

Exploring the full potential of actually personalizing all learning and behavior inside an intelligent building
is the next big step forward. As we showed with experiments with our prototypes (chapter 11.1), it is
theoretically and practically possible to track and identify people with the help of Bluetooth. To make
this really useable in a real-world environment specialized Bluetooth hardware needs to be developed. This
special bluetooth presence detectors would have to be directly integrated into the fieldbus network where all
other sensors of the building are connected to. One example would be a bluetooth presence detector device
that can directly be connected to a lonworks fieldbus network. Such a bluetooth presence detector would
have to deliver very highlevel information to it’s users such that all complicated work like link state quality
evaluation of Bluetooth links would be done directly in hardware.

As soon as such a technology is available all learning and control could be tight to persons. This would
greatly enhance the perceived intelligence of a building.

80

Part V

Appendix, Glossary and Bibliography

81

Appendix A

Fuzzy Logic Primer

A.1 Fuzzy Logic primer

Proofs for the following definitions are in [Ful00].

A.1.1 Definitions

We always assume that X denotes a non-fuzzy set and A denotes the corresponding fuzzy set.

The Membership Function (A.1) is a function that assigns every t ∈ X a value 0 ≤ x ≤ 1.

µA : X → [0, 1] (A.1)

Equation A.2 shows a frequently used short form for the membership function.

A(x) = µA(x) (A.2)

The support (A.3) of a fuzzy set A is the set of all x ∈ X such that A(x) > 0.

supp(A) = {x ∈ X|A(x) > 0} (A.3)

The α cut (Equation A.4) of a Fuzzy set A defines a subset of X (non fuzzy).

[A]{α} =
{
{t ∈ X|A(t) ≥ α} if α > 0
supp(A) if α = 0

(A.4)

A.1.2 Membership functions

The following equations assume that α > 0 is the left width and β > 0 is the right width with α ≤ β.

Triangular fuzzy number (Equation A.5 and Figure A.1). Shortform: A = (a, α, β).

A(t) =

 1− (a− t)/α) if a− α ≤ t ≤ a
1− (t− a)/β) if a ≤ t ≤ a+ β
0 otherwise

(A.5)

83

A.1. FUZZY LOGIC PRIMER APPENDIX A. FUZZY LOGIC PRIMER

Figure A.1: Triangular membership function

Figure A.2: Trapezoidal membership function

Trapezoidal fuzzy number (Equation A.6 and Figure A.2). Shortform: A = (a, b, α, β)

A(t) =


1− (a− t)/α) if a− α ≤ t ≤ a
1 if a ≤ t ≤ b
1− (t− b)/β) if a ≤ t ≤ b+ β
0 otherwise

(A.6)

LR-representation (Equation A.7) of fuzzy numbers, which is a generalized form of the trapezoidal repre-
sentation. Shortform: A = (a, b, α, β)LR

A(t) =


L((a− t)/α) if t ∈ [a− α, a]
1 if t ∈ [a, b]
R((t− b)/β) if t ∈ [b, b+ β]
0 otherwise

(A.7)

Figure A.3: Sigmoidal membership function

Sigmoidal fuzzy number/variable (Equation A.8 and Figure A.3).

f(x) =
1

1 + e−x
(A.8)

Gaussian membership function (Gaussian fuzzy number). In equation A.9 ρ is the standard deviation and
µ is the mean of the distribution (Figure A.4).

A(x) =
1

ρ
√

2π
e−

1
2 (x−µρ)2

(A.9)

84

APPENDIX A. FUZZY LOGIC PRIMER A.1. FUZZY LOGIC PRIMER

0

0.02

0.04

0.06

0.08

0.1

–10 –8 –6 –4 –2 2 4 6 8 10

Figure A.4: Gauss distribution as a membership function

Other membership functions that aren’t explained here in detail are shoulder, linear, segments and beta
function. Consult [Ful00] for details about these functions.

A.1.3 Fuzzy inferencing

The basic inferencing process involves the following steps:

1. fuzzification of the input variables

2. rule evaluation

3. aggregation of the rule outputs

4. defuzzification

This specific inferencing process is called Mamdani-style fuzzy inferencing process.

A.1.4 Fuzzy logic controllers

Control theory looks at complex systems from a black box perspective. The system to be controlled is
idealized as a simple black box with an input and an output. A controller is the part of the system (Figure
A.5) which is responsible to adjust the input to the system according to the output of it. This is made in
an attempt to achieve the desired output.

Controller System
in out

Feedback

Figure A.5: Basic layout of a non-fuzzy controller

Fuzzy logic control is built on the same principles but uses a different technique to decide what the output
of the controller should be. All decisions of the controller are made on the basis of fuzzy logic rules which
describe the relationship between fuzzy variables. A fuzzy logic controller (FLC) can only work with fuzzy
input and output values. Because of this the input values must be converted from crisp numbers to fuzzy
variables and the output values must be converted from fuzzy variables to crisp numbers. This two processes
are called fuzzification and defuzzification. An enhanced version of the original control system is shown in
Figure A.6.

85

A.1. FUZZY LOGIC PRIMER APPENDIX A. FUZZY LOGIC PRIMER

Controller

System

in

out

Feedback

Fuzzification

Defuzzification

Fuzzy Inference Engine

Fuzzy Rule Base

Figure A.6: Basic layout of a fuzzy controller

A FLC consists of two different parts: the inferencing engine and the fuzzy rule base. The fuzzy rule base is
a number of fuzzy logic rules which are used by the inferencing engine to reach a conclusion from the input
presented.

FLC’s are classified as either multi-input-multi-output (MIMO), multi-input-single-output (MISO) or single-
input-single-output (SISO) fuzzy systems (see [Ful00], page 67).

A.1.5 Fuzzification process

Fuzzification is the process that uses the membership functions to convert a crisp value to a fuzzy variable.
A fuzzy variable associates a membership value/strength for every fuzzy variable to a crisp value: µA : X →
[0, 1].

Low

Medium

High

Utilization

0 50 100
x

n(x)

1

0.5

Figure A.7: Fuzzification Process

Figure A.7 shows an example of the fuzzification process for three fuzzy variables. If, for example, the crisp
input value is 37.5 the values of the three fuzzy variables would be Low = 0.5, Medium = 0.5 and High =
0.0.

A.1.6 Defuzzification process

The end result, after all rules have been evaluated and aggregated (combined to one fuzzy set), is a single
fuzzy set that represents the decision taken. To apply the output of the fuzzy inferencing a crisp value
is required. Defuzzification is the process that is converting a single fuzzy set back into a crisp number.
Defuzzification is deferred till the last possible point of time. This is because defuzzification is not for free.
All the information that is contained in a fuzzy set is reduced to one crisp number which contains obviously
less information then the fuzzy set contains. This is a considerable loss of information.

86

APPENDIX A. FUZZY LOGIC PRIMER A.1. FUZZY LOGIC PRIMER

There are many defuzzification algorithms. Some of the most important ones are:

• Center of Area / Center of Gravity

• Center of Sums, Center of Largest Area

• First of Maxima

• Middle of Maxima

• Max Criterion

• Height defuzzification

Only center of gravity is explained in more detail here since this is the only method used in AHA. For details
about the other methods see [Ful00].

z0 =
∫
µ(x)dx∫
xdx

(A.10)

Center of gravity (Equation A.10) calculates the center of mass if the area of the fuzzy set is regarded as a
physical area. Calculation of the center of gravity is usually not possible in continuous space. Thus, Equation
A.11 is used in practice to calculate the center of gravity of a fuzzy set that has a discrete membership function
(which is usually the case).

z0 =
∑
xµ(x)∑
µ(x)

(A.11)

z0 is the crisp result of the fuzzy inferencing process (Figure A.8).

z0=30

u(x)

0 50

Figure A.8: Defuzzification with center-of-area/gravity

A.1.7 Rule based inferencing

The basis for decisions taken by a fuzzy logic controller are linguistic description rules. These rules are
expert knowledge that needs to be set up by a human domain expert. The rules are of the form:

R1 : if x is A1 and y is B1 then z is C1

R2 : if x is A2 and y is B2 then z is C2

R3 : if x is A3 and y is B3 then z is C3

Rn : if x is An and y is Bn then z is Cn

87

A.1. FUZZY LOGIC PRIMER APPENDIX A. FUZZY LOGIC PRIMER

Rn is the identification of the rule, x and y are input variables and z is the output (control) variable. Ai,
Bi and Ci are linguistic variables. x, y and z are fuzzy variables.

To obtain the output zi for a particular set of input values all rules are evaluated in parallel. This involves
the following steps:

1. Find the firing level of each of the rules

2. Find the output of each of the rules

3. Aggregate the individual rule outputs to obtain the overall system output

88

Appendix B

Agent Building and Learning
Environment

ABLE, short for Agent Building and Learning Environment ([ABL]), is an extensive Java framework and
library for developing multi agent systems that utilize machine learning and reasoning. It is a research
project of the IBM T.J. Watson Research Center and offered by IBM on alphaworks.

ABLE was used extensively during the development of ABI and the former project AHA ([RS02]) and it
is thus necessary for the reader of this documentation to understand the basic principles of ABLE. In the
following sections a short introduction is given to the parts of ABLE that are used within the ABI framework.
Parts of ABLE which aren’t used within the ABI project aren’t mentioned here. For more information about
ABLE consult [BSP+02] or the ABLE documentation ([ABL] and [ARL]). A more advanced introduction
to ABLE and it’s functionality and principles is given in the book [PB01].

B.1 Agents

ABLE offers an extensive framework for developing multi-agent systems. It provides generic base classes
for agents that can later on be used as JAS compliant agents. These classes provide all necessary features
an agent developer needs. This includes lifecycle support, registration in the agent directory, intra-and
interagent communication and message processing.

Every agent that uses ABLE and is JAS compliant implements the interface AbleJASAgent. AbleJAS-
DefaultAgent is a default implementation of AbleJASAgent. All agents in ABI indirectly inherit from
AbleJASDefaultAgent. AbleJASDefaultAgent already provides the facilities necessary to communicate with
the JAS platform.

B.1.1 JAS

ABLE is fully JAS (Java Agent Specification, also called JSR-87) compliant as described in section 5.3.
This includes an implementation of the Agent Directory Service, the Agent Naming Service and the Message
Transport System. ABLE uses the official JAS reference implementation. In addition to the standardized
JAS platform services ABLE offers lifecycle management facilities. This additional platform service allows
it to delegate start,stop and reset agent operations to the JAS platform itself. This reduces the management
required for a multi-agent system considerably because all the lifecycle operations are carried out by JAS
regardless on which physical machine the agent actually resides.

89

B.2. ARL APPENDIX B. AGENT BUILDING AND LEARNING ENVIRONMENT

B.2 ARL

ARL, short for ABLE Rule Language, is a Java like language for specifying rules and variables for inferencing.
Within the context of ABI only the fuzzy parts of ARL are used which includes the specification of fuzzy
membership functions and of if-then rules with fuzzy operators.

B.2.1 Structure of ARL

An ARL file represents a single ruleset consisting of one or more ruleblocks. The general structure is shown
in B.1. Only the parts of ARL used in ABI are mentioned in the following section, see [ARL] for a complete
documentation. All examples given in the following section are extracted from one of the rulesets used for
this project.

ruleset <name> {

variables {
<Variable Declartions>+
}

inputs { <variableName>* }
outputs { <variableName>* }

void process() using <Inference Engine Type> { //ruleblock 1
<rule>+
}

}

Figure B.1: ARL structure

Every input variable specified needs to be fuzzified (in case it is not already of a categorical type). The
relationship between a fuzzy variable and a real valued variable is described by membership functions which
are also part of an ARL definition. Membership functions are composed of a number of fuzzy sets of different
forms (Linear, Triangle, Sigmoidal, Gaussian, etc). Every of these fuzzy sets is associated with a human-
readable label (for example A night1 in example B.2) with which it is later on referenced (from within the
ruleblocks). A fuzzy variable is always based on a continuous range of real numbers, for example the range
[0.0, 86400..0] in figure B.2. Figure B.3 shows the membership function shown in figure B.2 as a graph.

Fuzzy DayTime = new Fuzzy(0.0 , 86400.0) {
Linear F_night2 = new Linear (75600.0, 86400.0, ARL.Up);
Linear A_night1 = new Linear (0.0, 18000.0, ARL.Down);
Triangle B_morning = new Triangle (14400.0, 25200.0, 36000.0);
Triangle E_evening = new Triangle (57600.0, 68400.0, 79200.0);
Triangle C_midday = new Triangle (28800.0, 43200.0, 57600.0);
Triangle D_afternoon = new Triangle (43200.0, 54000.0, 64800.0);

};

Figure B.2: ARL definition of a fuzzy variable

The second variable type used is the categorical variable. A categorical variable consists of a finite set of
valid values. All other values are invalid. Categorical variables don’t need to be fuzzified. Figure B.4 shows
an example of a definition of a categorical variable.

All input and output values of the inferencing process are real-valued (either a real number or a string in case
of a categorical variable). Figure B.5 shows an example of the definition of the input and output variables.

90

APPENDIX B. AGENT BUILDING AND LEARNING ENVIRONMENT B.3. FUZZY INFERENCING

Figure B.3: Visualization of the membership function DayTime

Categorical TemperatureFuzzyState = {"A_veryCold", "B_cold", "C_warm", "D_veryWarm", "E_hot"};

Figure B.4: ARL definition of a categorical variable

The rules itself are structured within blocks. Every block of rules (called ruleblock) has a unique name and
contains a number of rules. Every of this rules is identified by a unique label (rule label, rule name). Figure
B.6 shows an example of two rules. The first rule (called Support Presence2) is a rule that uses a conditional
variable in the antecedent of the if clause and the second rule (called Support DayLightIndoorFuzzyStateA dark)
uses a fuzzy variable in the antecedent of the clause. DayLightIndoor is the fuzzy variable and A dark is a
label that identifies a fuzzy set that is part of the definition of the fuzzy variable DayLightIndoor.

ABLE comes with a graphical editor for editing, verifying and visualizing ARL rule files. It automatically
verifies ARL rulefiles which allows it to test ARL rulefiles before actually integrating them into an application.

B.3 Fuzzy Inferencing

ABLE offers a fuzzy inferencing engine which is capable of using a if-then rulebase and a set of definitions of
fuzzy variables to do fuzzy inferencing including the preceding fuzzification and the ensuing defuzzification.
The rulebase and all necessary definitions for the fuzzification and defuzzification process are specified with
ARL (ABLE Rule language, [ARL]).This ARL definitions are used by the fuzzy inferencing engine together
with input values to make an inference.

The fuzzy inferencing engine supports the operators is (for example ”if A is X“), and (”if A is X and B is
Y“) as well as various fuzzy hedges (for example not, slightly, above, below).

Unfortunately the fuzzy operator or is not supported by ABLE. or is absolutely necessary if one wants to
formulate complex rules (especially rules that are automatically learned and processes). The workaround for
this is to use a combination of fuzzy hedges. See section 9.5.1 for details.

91

B.3. FUZZY INFERENCING APPENDIX B. AGENT BUILDING AND LEARNING ENVIRONMENT

inputs{Temperature, DayTime, Presence, DayLightIndoor,
RadiationEast, RadiationWest, RadiationSouth, Illumination1};

outputs{firedRules, notUsed, LightAction, BlindAction,
TemperatureFuzzyState, DayTimeFuzzyState, DayLightIndoorFuzzyState,
RadiationEastFuzzyState, notUsed, notUsed, Illumination1FuzzyState,
PresenceState};

Figure B.5: ARL definition of the input and output variables

Support_Presence2:
if (Presence == 0.0)
then PresenceState = 0.0;

Support_DayLightIndoorFuzzyStateA_dark:
if (DayLightIndoor is A_dark)
then DayLightIndoorFuzzyState = "A_dark";

Figure B.6: ARL rules

92

Appendix C

Configuration

C.1 BusSim Schema File

Listing C.1: Grammar for describing a simulated sensor network
<xsd : schema xmlns : xsd=”http ://www. w3 . org /2001/XMLSchema”

targetNamespace=”http :// c a s t o r . exolab . org / Test / Invo i c e”>

<xsd : element name=”ahaSim”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”dev i ce ” maxOccurs=”unbounded ” minOccurs=”0”/>

</xsd : sequence>
<xsd : attr ibuteGroup r e f=”AhaSimAttributes”/>

</xsd : complexType>
</xsd : element>

<xsd : element name=”dev i ce”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”v a r i a b l e ” minOccurs=”0” maxOccurs

=”unbounded”/>
</xsd : sequence>
<xsd : attr ibuteGroup r e f=”Dev iceAtt r ibute s”/>

</xsd : complexType>
</xsd : element>

<xsd : element name=”v a r i a b l e”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”connect ion ” minOccurs=”0”

maxOccurs=”unbounded”/>
</xsd : sequence>
<xsd : attr ibuteGroup r e f=”Var i ab l eAt t r ibu t e s ”/>

</xsd : complexType>
</xsd : element>

<xsd : element name=”connect ion”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”mapping ” minOccurs=”1” maxOccurs=”

unbounded”/>
</xsd : sequence>

<xsd : attr ibuteGroup r e f=”Connect ionAttr ibutes”/>

93

C.2. VIRTUAL PERSON SCHEMA FILE AND EXAMPLE APPENDIX C. CONFIGURATION

</xsd : complexType>
</xsd : element>

<xsd : element name=”mapping”>
<xsd : complexType>

<xsd : s impleContent>
<xsd : ex tens i on base=”xsd : s t r i n g”>

<xsd : a t t r i b u t e name=”cmp” type=”xsd : s t r i n g
”/>

<xsd : a t t r i b u t e name=”value ” type=”xsd : s t r i n g
”/>

<xsd : a t t r i b u t e name=”ac t i on ” type=”xsd :
s t r i n g ”/>

</xsd : ex tens i on>
</xsd : s impleContent>

</xsd : complexType>
</xsd : element>

<xsd : attr ibuteGroup name=”Dev iceAtt r ibute s”>
<xsd : a t t r i b u t e name=”room ” type=”xsd : s t r i n g ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”name” type=”xsd : s t r i n g ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”comment ” type=”xsd : s t r i n g ” use=”opt i ona l ”/>

</xsd : attr ibuteGroup>

<xsd : attr ibuteGroup name=”Var i ab l eAt t r ibu t e s”>
<xsd : a t t r i b u t e name=”name” type=”xsd : s t r i n g ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”id ” type=”xsd : i n t e g e r ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”d e f a u l t ” type=”xsd : s t r i n g ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”comment ” type=”xsd : s t r i n g ” use=”opt i ona l ”/>

</xsd : attr ibuteGroup>

<xsd : attr ibuteGroup name=”Connect ionAttr ibutes”>
<xsd : a t t r i b u t e name=”t a r g e t ” type=”xsd : s t r i n g ” use=”requ i r ed ”/>

</xsd : attr ibuteGroup>

<xsd : attr ibuteGroup name=”AhaSimAttributes”>
<xsd : a t t r i b u t e name=”t imedEventsFi le ” type=”xsd : s t r i n g ” use=”opt i ona l ”/>
<xsd : a t t r i b u t e name=”startTime ” type=”xsd : s t r i n g ” use=”opt i ona l ”/>

</xsd : attr ibuteGroup>

</xsd : schema>

C.2 Virtual Person schema file and example

Listing C.2: Grammar for virtual persons

<?xml v e r s i on =”1.0”?>
<xsd : schema xmlns : xsd=”http ://www. w3 . org /2001/XMLSchema”

targetNamespace=”http :// c a s t o r . exolab . org / Test / Invo i c e”>

<xsd : element name=”ahaPerson”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”person ” maxOccurs=”unbounded ” minOccurs=”0”/>

</xsd : sequence>
</xsd : complexType>

</xsd : element>

<xsd : element name=”person”>
<xsd : complexType>

94

APPENDIX C. CONFIGURATION C.2. VIRTUAL PERSON SCHEMA FILE AND EXAMPLE

<xsd : sequence>
<xsd : element r e f=”room ” minOccurs=”1” maxOccurs=”

unbounded”/>
<xsd : element r e f=”behaviour ” minOccurs=”0” maxOccurs

=”unbounded”/>
</xsd : sequence>
<xsd : attr ibuteGroup r e f=”PersonAttr ibutes”/>

</xsd : complexType>
</xsd : element>

<xsd : element name=”room”>
<xsd : complexType>
<xsd : attr ibuteGroup r e f=”RoomAttributes”/>

</xsd : complexType>
</xsd : element>

<xsd : element name=”behaviour”>
<xsd : complexType>

<xsd : s impleContent>
<xsd : ex tens i on base=”xsd : s t r i n g”>
<xsd : a t t r i b u t e name=”source ” type=”xsd : s t r i n g ” use=”

requ i r ed ”/>
<xsd : a t t r i b u t e name=”cmp” type=”xsd : s t r i n g ” use=”

requ i r ed ”/>
<xsd : a t t r i b u t e name=”value ” type=”xsd : s t r i n g ” use=”

requ i r ed ”/>
<xsd : a t t r i b u t e name=”dest ” type=”xsd : s t r i n g ” use=”

requ i r ed ”/>
</xsd : ex tens i on>

</xsd : s impleContent>
</xsd : complexType>
</xsd : element>

<xsd : attr ibuteGroup name=”PersonAttr ibutes”>
<xsd : a t t r i b u t e name=”id ” type=”xsd : i n t e g e r ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”startTime ” type=”xsd : time ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”endTime ” type=”xsd : time ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”var iance ” type=”xsd : double ” use=”requ i r ed ”/>

</xsd : attr ibuteGroup>

<xsd : attr ibuteGroup name=”RoomAttributes”>
<xsd : a t t r i b u t e name=”main ” type=”xsd : boolean ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”id ” type=”xsd : i n t e g e r ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”p r o b a b i l i t y ” type=”xsd : i n t e g e r ” use=”requ i r ed ”/>

</xsd : attr ibuteGroup>
</xsd : schema>

Listing C.3: Example of a config file for virtual persons
<ahaPerson>

<person id =”1” startTime =”00:30:00−00:00” endTime =”17:30:00−00:00” var iance
=”0.75”>

<room id =”3” p r o b a b i l i t y =”50” main=” f a l s e ”/>
<room id =”1” p r o b a b i l i t y =”20” main=” f a l s e ”/>
<room id =”8” p r o b a b i l i t y =”20” main=” f a l s e ”/>
<room id =”7” p r o b a b i l i t y =”10” main=” f a l s e ”/>
<behaviour source=”day l i gh t ” cmp=”lower ” value =”5000” dest=”b l i n d s”>

SET ON 0 . 0 0 . 0 0
</behaviour>
<behaviour source=”day l i gh t ” cmp=”lower ” value =”3000” dest=”

l i gh tSw i t ch”>
SET ON 0 . 0 0 . 0 0

95

C.2. VIRTUAL PERSON SCHEMA FILE AND EXAMPLE APPENDIX C. CONFIGURATION

</behaviour>
<behaviour source=”day l i gh t ” cmp=”higher ” value =”5000” des t=”

l i gh tSw i t ch”>
SET OFF 0 . 0 0 . 0 0

</behaviour>
<behaviour source=”day l i gh t ” cmp=”higher ” value =”7000” des t=”b l i n d s

”>
SET OFF 0 . 0 0 . 0 0

</behaviour>
</person>
<person id =”2” startTime =”01:30:00−00:00” endTime =”17:30:00−00:00” var iance

=”0.75”>
<room id =”3” p r o b a b i l i t y =”60” main=” f a l s e ”/>
<room id =”1” p r o b a b i l i t y =”10” main=” f a l s e ”/>
<room id =”8” p r o b a b i l i t y =”30” main=” f a l s e ”/>

</person>
</ahaPerson>

Listing C.4: Grammar for id to variable name mapping, BusAgent
<?xml ve r s i on =”1.0”?>
<xsd : schema xmlns : xsd=”http ://www. w3 . org /2001/XMLSchema”

targetNamespace=”http :// c a s t o r . exolab . org / Test / Invo i c e”>

<xsd : element name=”ahaBus”>
<xsd : complexType>

<xsd : sequence>
<xsd : element r e f=”v a r i a b l e ” maxOccurs=”unbounded ” minOccurs=”0”/>

</xsd : sequence>
</xsd : complexType>

</xsd : element>

<xsd : element name=”v a r i a b l e”>
<xsd : complexType>
<xsd : attr ibuteGroup r e f=”v a r i a b l e A t t r i b u t e s ”/>

</xsd : complexType>
</xsd : element>

<xsd : attr ibuteGroup name=”v a r i a b l e A t t r i b u t e s”>
<xsd : a t t r i b u t e name=”id ” type=”xsd : i n t e g e r ” use=”requ i r ed ”/>
<xsd : a t t r i b u t e name=”name” type=”xsd : s t r i n g ” use=”requ i r ed ”/>

</xsd : attr ibuteGroup>
</xsd : schema>

96

Glossary

ABI Adaptive Building Intelligence

ABLE Agent building and learning network

Agent An agent is a computer system that is situated in some environment, and that is capable
of autonomous action in this environment in order to meet its design objectives ([WJ94]).

AHA Adaptive Home Automation

AI Artificial intelligence

ARL ABLE rule language

DAI Distributed artificial intelligence

Defuzzification The process of converting a fuzzy set to a crisp number (FLC output)

DGC Distributed garbage collection

EIB European installation bus

ETH Swiss Federal Institute of Technology

FIPA Foundation for Intelligent Physical Agents

FLC Fuzzy logic controller

Fuzzyification The process of converting a crisp number to a fuzzy set

IB Intelligent Building

IE Intelligent Environment

INI Institute of Neuroinformatics, University and ETH Zurich, Switzerland

JAS Java Agent Specification

JCP Java community process

JSR-87 Java Change Request Nr. 87, the official name of the JAS specification during develop-
ment/review.

LNS Lon Network Server

LonWorks Field bus network protocol / standard

MAS Multi agent system

MIMO Multi-input-multi-output (classification for a FLC)

MISO Multi-input-single-output (classification for a FLC)

ML Machine learning

SISO single-input-single-output (classification for a FLC)

UNIZH University of zurich

97

Bibliography

[ABL] Agent building and learning environment (able). http://www.alphaworks.ibm.com/tech/able.

[ANT] Antlr, another tool for language recognition. http://wwww.antlr.org.

[ARL] IBM alphaworks. ABLE Team, Able Rule Language (ARL) Documentation.

[BDY99] Magnus Boman, Paul Davidsson, and H̊akan L. Younes. Artificial decision making under un-
certainty in intelligent buildings. In Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 65–70, 1999. ftp://ftp.dsv.su.se/users/mab/uai99.ps.

[blua] Bluetooth roaming proposals. http://www.hpl.hp.com/personal/Jean%5FTourrilhes/Papers/apr-
jt.pdf.

[blub] Roaming for bluetooth. http://users.pandora.be/ElJeffe/Roaming%20for%20Bluetooth.pdf.

[bluc] Bs. http://www.bluetooth.org/specifications.htm.

[Bon96a] Andrea Bonarini. Delayed Reinforcement, Fuzzy Q-Learning and Fuzzy Logic Controllers. In
F. Herrera and J. L. Verdegay, editors, Genetic Algorithms and Soft Computing, (Studies in
Fuzziness, 8), pages 447–466, Berlin, D, 1996. Physica-Verlag.

[Bon96b] Andrea Bonarini. Evolutionary Learning of Fuzzy rules: competition and cooperation. In
W. Pedrycz, editor, Fuzzy Modelling: Paradigms and Practice, pages 265–284. Norwell, MA:
Kluwer Academic Press, 1996.

[Bon97] A. Bonarini. Anytime learning and adaptation of structured fuzzy behaviors. Adaptive Behavior
Journal, Vol 5(Nr. 3-4), 1997.

[Bro97] R. Brooks. The intelligent room project. In Proceedings of the second International Cognitive
Technology Conference (ICT’97), Aizu, Japan, 1997.

[BSP+02] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao. Able: A toolkit
for building multiagent autonomic systems. IBM Systems Journal, Applications of Artificial
Intelligence, Vol 41(Nr.3):350–371, 2002.

[CAS] Castor. http://castor.exolab.org.

[CCSZ21] J. L. Castro, J. J. Castro-Schez, and J. M. Zurita. Learning maximal structure rules in fuzzy logic
for knowledge acquisition in expert systems. Fuzzy Sets and Systems, 101:331–342, 1999/2/1.

[Coe97] Michael H. Coen. Building brains for rooms: Designing distributed software agents. In Proceedings
of the Ninth Innovative Applications of Artificial Intelligence Conference. AAAI Press, 1997.

[Coe98] Michael H. Coen. Design principles for intelligent environments. In Proceedings of the 1998
National Conference on Artificial Intelligence. AAAI Press, 1998.

[CZ16] J. L. Castro and J. M. Zurita. An inductive learning algorithm in fuzzy systems. Fuzzy Sets and
Systems, 89:193–203, 1997/7/16.

[CZ65] Juan Luis Castro and Jose Manuel Zurita. A generic atms. International Journal of Approximate
Reasoning, 14:259–280, 1996/5.

98

http://www.alphaworks.ibm.com/tech/able
http://wwww.antlr.org
ftp://ftp.dsv.su.se/users/mab/uai99.ps
http://www.hpl.hp.com/personal/Jean%5FTourrilhes/Papers/apr-jt.pdf
http://www.hpl.hp.com/personal/Jean%5FTourrilhes/Papers/apr-jt.pdf
http://users.pandora.be/ElJeffe/Roaming%20for%20Bluetooth.pdf
http://www.bluetooth.org/specifications.htm
http://castor.exolab.org

BIBLIOGRAPHY BIBLIOGRAPHY

[EBB+02] Kynan Eng, Andreas Baebler, Ulysses Bernardet, Mark Blanchard, Adam Briska, Joerg Conradt,
Marcio Costa, Tobi Delbrueck, Rodney J Douglas, Klaus Hepp, David Klein, Jonatas Manzolli,
Matti Mintz, Thomas Netter, Fabian Roth, Ueli Rutishauser, Klaus Wassermann, Adrian What-
ley, Aaron Wittmann, Reto Wyss, and Paul F M J Verschure. Ada: Constructing a synthetic
organism. In Proceedings of IROS 2002, IEEE/RSJ International Conference on Intelligent
Robots and Systems, Lausanne, Switzerland. Institute of Neuroinformatics ETH/University of
Zurich, 2002.

[FIP02] Fipa abstract architecture specification (xc00001k). Technical report, Foundation For Intelligent
Physical Agents, Geneva, Switzerland, 2002.

[FLoA02] Inc. Fujitsu Laboratories of America. Jas agent services (jsr-87) specification. http://www.java-
agent.org, 2002.

[Ful00] Robert Fullr. Neural fuzzy systems. In Advances in Soft Computing Series. Springer-Verlag,
Berlin/Heildelberg, 2000. ISBN : 3-7908-1256-0.

[HCCC02] Hani Hagras, Victor Callaghan, Martin Colley, and Graham Clarke. A hierarchical fuzzy-genetic
multi-agent architecture for intelligent buildingsnext term online learning, adaptation and control.
Information Sciences, In Press, Uncorrected Proof, 2002.

[INS] Mobile phone outlook takes a bite from bluetooth forecast.
http://www.instat.com/newmk.asp?ID=213.

[JCO] Jcommon, general java library with supporting classes for various purposes. http://www.object-
refinery.com/jcommon/index.html.

[JFR] Jfreechart, a library for producing dynamic plots out of java. http://www.object-
refinery.com/jfreechart/index.html.

[JSI] Jsim a java-based simulation and animation environment. http://chief.cs.uga.edu/ jam/jsim/.

[JSP] Java simulation package. http://www.cs.utah.edu/ gback/process/.

[L4J] Log4j logging framework. http://jakarta.apache.org/ant.

[LNS] Lns hmi developer’s kit for the java platform. http://www.echelon.com/Products/lns/lnsJava.htm.

[PB01] Joseph P.Bigus and Jennifer Bigus. Constructing Intelligent Agents using Java. John Wiley Sons,
Inc., New York, 2001. ISBN : 0-471-39601-X.

[Rin] Andreas Rinkel. Java tools for object oriented process simulation (jtoops).
http://rinkel.ita.hsr.ch/jtoops/index.html.

[RS02] Ueli Rutishauser and Alain Schaefer. Intelligent buildings – a multi-agent approach. Technical
report, University of Applied Sciences Rapperswil, Switzerland and Institute of Neuroinformatics,
Swiss Federal Institute of Technology, Zurich, Switzerland, 2002.

[RSDJ02] Ueli Rutishauser, Alain Schaefer, Rodney Douglas, and Josef Joller. Adaptive building intelli-
gence, a multi-agent approach. In Proceedings of Embodied AI Workshop, Special issue on the
design principles. Zurich, Switzerland. Artificial Intelligence Laboratory, Department of Informa-
tion Technology, University of Zurich, Switzerland, 2002.

[Sto00] Peter Stone. Layered Learning in Multiagent Systems. MIT Press, Cambridge,Massachusetts,
2000. ISBN : 0-262-19438-4.

[SZ96] Jurgen Schmidhuber and Jieyu Zhao. Multi-agent learning with the success-story algorithm. In
ECAI Workshop LDAIS / ICMAS Workshop LIOME, pages 82–93, 1996.

[VC00] Graham Clarke Victor Callaghan. A soft-computing dai architecture for intelligent build-
ings. Technical report, Department of Computer Science, University of Essex and Depart-
ment of Computer Science, University of Hull, 2000. http://cswww.essex.ac.uk/intelligent-
buildings/publications/springerverlag.pdf.

99

http://www.instat.com/newmk.asp?ID=213
http://www.object-refinery.com/jcommon/index.html
http://www.object-refinery.com/jcommon/index.html
http://www.object-refinery.com/jfreechart/index.html
http://www.object-refinery.com/jfreechart/index.html
http://chief.cs.uga.edu/~jam/jsim/
http://www.cs.utah.edu/~gback/process/
http://jakarta.apache.org/ant
http://www.echelon.com/Products/lns/lnsJava.htm
http://rinkel.ita.hsr.ch/jtoops/index.html
http://cswww.essex.ac.uk/intelligent-buildings/publications/springerverlag.pdf
http://cswww.essex.ac.uk/intelligent-buildings/publications/springerverlag.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[Wei99] Gerhard Weiss, editor. MULTIAGENT SYSTEMS, A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, Massachusetts, 1999. ISBN : 0-262-23203-0.

[WJ94] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.
HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h (Hypertext version of Knowl-
edge Engineering Review paper), 1994.

[ZDN] Uk passes mobile adoption milestone. http://news.zdnet.co.uk/story/0,,s2079994,00.html.

100

http://news.zdnet.co.uk/story/0,,s2079994,00.html

	Preface
	I Introduction
	Introduction
	Overview
	Content
	Related work

	Motivation

	II Architecture
	System Architecture
	Basic principles
	Connectivity
	Generic Structure information

	Software Architecture
	Overview
	Agents
	Implementation requirements

	Multi-agent system
	Overview
	Agents
	FIPA and JAS
	Overview
	The JAS platform
	Agent Naming Service
	Agent Directory Service
	Message Transport System
	Lifecycle Service
	Usage scenarios
	Package

	Messaging
	Interest based, asynchronous messaging
	Topics
	Messages

	III Design and Implementation
	Design and Implementation
	Programming language and runtime environment
	MAS framework
	3rd party frameworks
	Packages

	Simulation
	Motivation
	Design and Implementation

	Learning a maximal structure fuzzy rule base with an anytime learning algorithm
	Overview
	Features of the algorithm
	Related Work

	Notation
	The algorithm
	Definitions
	Operators
	Algorithm

	Motivation
	Examples
	Implementation

	Anytime learning and fuzzy inferencing applied to intelligent buildings
	Overview
	Model and learning units
	Decision Making
	Design of membership functions
	Radiation
	Temperature
	Illumination
	Daytime

	Structure of rulebase
	Fuzzy OR operator
	OR to AND conversion

	Implementation
	Dynamic creation of rules

	Related work

	Agents
	Messaging
	Bus Agent
	Functionality
	Messages
	Implementation

	Structure Agent
	Functionality
	Messages
	Implementation

	Simulator Agents
	BusSim - Simulation of BusAgent
	Simulator Agent - Control of simulation time

	Control Agent
	Functionality
	Messages
	Implementation

	Distribution Agent
	Functionality
	Messages
	Implementation

	BuildingViewer Agent
	Functionality
	Messages
	Implementation

	Person Locator Agent
	Functionality
	Messages
	Implementation

	Virtual Person Agent
	Functionality
	Messages
	Implementation

	Personalization
	Person Tracking -- Bluetooth
	Mobile Device Program
	Server side

	System Configuration
	Envrionment Variables
	Config Files

	IV Results and future work
	Results
	Evaluation
	Architecture
	Messaging
	Simulation
	JAS

	Learning and inferencing
	Personalization

	Future
	Learning and inferencing
	Structure information
	Personalization

	V Appendix, Glossary and Bibliography
	Fuzzy Logic Primer
	Fuzzy Logic primer
	Definitions
	Membership functions
	Fuzzy inferencing
	Fuzzy logic controllers
	Fuzzification process
	Defuzzification process
	Rule based inferencing

	Agent Building and Learning Environment
	Agents
	JAS

	ARL
	Structure of ARL

	Fuzzy Inferencing

	Configuration
	BusSim Schema File
	Virtual Person schema file and example

	Glossary

