
research work

Adaptive Building Intelligence
An approach to adaptive discovery

of functional structure

Jonas Trindler Raphael Zwiker
<trindler@ini.phys.ethz.ch> <rzwiker@ini.phys.ethz.ch>

Advisors
Prof. Dr. Rodney Douglas, Institute of Neuroinformatics, ETH/University Zurich

Prof. Dr. Josef Joller, University of Applied Sciences Rapperswil

A cooperation between

Computer Science Department Institute of Neuroinformatics

University of Applied Science Rapperswil University and ETH Zurich

Oberseestrasse 10 Winterthurstrasse 190

8640 Rapperswil, Switzerland 8057 Zurich, Switzerland

September 16, 2003

Typeset by LATEX

Abstract

Modern approaches to the architecture of living and working environments emphasize the simple reconfigura-
tion of space to meet the needs, comfort and preferences of its inhabitants and to minimize the consumption
of resources such as power. The configuration can be explicitly specified by a human building manager, but
there is now increasing interest in the development of intelligent buildings equipped with standard sensors
(e.g. presence, temperature, illumination, humidity) and effectors (e.g. lights, window blinds, wall-switches)
that adapt to the needs of its inhabitants without human intervention.

There are several approaches to control such an intelligent building by learning the behavior of each room
and take decisions based on experience. This approaches however all use a static structure where each sensor
and effector is assigned statically to a room instead of considering the dynamic structure of the building.

We describe and demonstrate an algorithm that dynamically discovers and hierarchically clusters functionally
related sensors and effectors. Based on the temporal occurrence of events, generated by sensors and effectors,
we build up a weighted directed graph. These weights are event-dependent and are constantly adapted with
a hebbian-like learning algorithm. Our approach is completly unsupervised and learns the relations passive.

In a second step the graph is partitioned using a normalized cut [?]. The partitions of the graph are small
clusters with logically related devices.

The algorithms are implemented and tested using real data from a mixed intelligent / standard business
environment. We illustrate that the discovered clusters can directly correspond to the office and suboffice
structure of the building.

This approach to adaptive discovery of functional structure is part of a multi-agent-based intelligent building
system project called Adaptive Building Intelligence [?].

Further documentation, the API reference documentation and the sourcecode can be found at:
http://www.ini.unizh.ch/~trindler/abi/.

ii

http://www.ini.unizh.ch/~trindler/abi/

Contents

Preface iv

I Introduction 1

1 Introduction 2

1.1 Overview . 2

1.2 Adaptive Building Intelligence (ABI) . 2

1.3 Content . 3

1.4 Related work . 4

2 Motivation 5

II Approach to the problem of structure 6

3 Determine functional relationship between devices and partition them into clusters 7

3.1 Overview . 7

3.2 Determine similartiy between devices . 7

3.2.1 Correlation coefficient . 7

3.2.2 Temporal dependent activity . 8

3.2.3 Genetic algorithm . 8

3.3 Clustering / partitioning . 9

3.3.1 Minimal spanning tree . 9

3.3.2 K-means clustering . 9

3.3.3 Normalized cut . 10

3.4 Which one fits best? . 10

3.4.1 Measure similarity . 10

3.4.2 Clustering / partitioning . 11

iii

CONTENTS CONTENTS

4 Theory 12

4.1 Hebbian Learning . 12

4.1.1 Temporal aspects . 14

4.1.2 Adaption to a multisensor environment . 14

4.2 Normalized cut algorithm . 16

4.2.1 Computation . 17

4.2.2 Algorithm . 18

4.2.3 Transfer to clustering our hebbian learned connection graph 18

5 Our approach to the problem of structure 19

5.1 Determine functional relationship . 19

5.1.1 Transform directed reward graph into undirected . 21

5.2 Partition graph into subgraphs . 21

5.3 Track structure of clusters . 21

III Architecture 23

6 System Architecture 24

6.1 Basic principles . 24

7 Software Architecture 26

7.1 Overview ABI System / Standards . 26

7.2 Agents and their interaction . 26

7.2.1 Control agent . 27

7.2.2 Structure agent . 27

7.2.3 Structure discovery agent . 27

7.2.4 Bus agent . 27

7.2.5 PC agent . 28

7.2.6 Distribution agent . 28

7.2.7 Virtual person agent . 28

IV Design and Implementation 29

8 Structure Discovery Agent 30

8.1 Functionality . 30

iv

CONTENTS CONTENTS

8.2 Messages in AHA . 30

8.3 Implementation . 31

8.3.1 Design . 31

8.3.2 Data flow . 33

8.3.3 Visualisation . 33

8.4 Used frameworks . 33

9 Filtering 36

9.1 Similar Event Filter . 36

9.2 Presence Detector . 36

9.3 Toggle Filter . 36

10 Simulation 38

10.1 Who records event data . 38

10.2 Features . 38

V Results and Discussion 39

11 Results and Discussion 40

11.1 How sparse is the data? . 40

11.2 Time delay . 42

11.3 Hebbian learning . 46

11.3.1 What’s a good approximation for a reward function? 46

11.3.2 Decay . 47

11.3.3 Trend of connections over time . 50

11.3.4 Discussion . 53

11.4 Clustering . 56

11.4.1 Threshold . 56

11.4.2 Eigenvalue and eigenvector . 56

11.4.3 Quality of clustering . 58

VI Conclusion and Future Work 62

12 Conclusion 63

13 Future work 64

v

CONTENTS CONTENTS

13.1 Include event values and analog devices . 64

13.2 Different reward functions . 64

13.3 Deploy dynamic structure information to multi-agent-system 64

13.4 Policy transfer . 65

VII Glossary and Bibliography 66

vi

Preface

by Prof. Dr. Joseph M. Joller, University of Applied Sciences Rapperswil, Switzerland

We are working towards a better understanding of the concept ”Buildings as Multi-Agent systems”. The
previous work by U. Rutishauser and A. Schaefer tried to build a whole system from scratch in a very
short period of time. Several concepts (hardware abstraction, clustering, learning) were implemented in a
prototype system.

The overall architecture, that seems to emerge and to become more and more visible, consists of at least the
following layers:

• Application Layer
interfaces for several add-on devices, including specialized agents (location, remote control,)

• Core Agent Layer
ABLE based agents, with learning algorithm(s) and rule bases and mechanisms for policy transfers.

• Agent Communication Layer
this layer is more or less covered by JAS

• Hardware Abstraction Layer
including structure agents

This term project had clear targets:

• to understand the spontaneous structuring of sensors and to study data clustering techniques in general.

• to compare controlled versus uncontrolled rooms. The uncontrolled rooms are of special interest, as
we didn’t have time yet in the other projects to systematically study their patterns. The results are
fundamental and absolutely needed, before we can even think about controlling the room by agent
technology. Only if we know, how the system behaves, we can start thinking about a model of the
system, which we will implement using agent technology.

The results reported in this term project should, together with the raw data collected, provide a solid base
on which we can now study in more details the Agent part of the system, including the learning algorithm,
which probably has to be replaced completely.

The term project is an important step from a pure ”try” project level to a ”productive” level. It must be
our goal to come up with

• a clear architecture

• solid software solutions, backed by field data

• well understood structures, rules and agent communities.

I look forward to the diploma thesis, where we will have to move upwards in the above layer architecture.

vii

CHAPTER 0. PREFACE

viii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Overview

In this paper we describe our approach to discover the functional structure of a typical commerical building.
We define a learning algorithm, which is related to hebbian learning, to determine the relationship between
all sensors and effectors in a building. This measure of similarity is used in a second step to group them into
several independent clusters whereas these represent the functional structure. Our approach is event-driven
and computes the new structure online.

Before we explain our approach, we illustrate the needs for discovering structure in a dynamic way. To make
a typical commercial building really intelligent one has to understand the dynamic behavior of itself and its
inhabitants. Previous research work of U.Rutishauser and A. Schaefer [?] focused on adaptive control and
learning of such a building. It is necessary to introduce their work to understand what are the open issues
and needs which have to be analysed and satisfied before we can illustrate the objectives of our work.

1.2 Adaptive Building Intelligence (ABI)

Other projects [?, ?] have shown that it is possible to use results of interdisciplinary research fields (neu-
roscience, artificial intelligence, computer science and electrical engineering) to build intelligent rooms and
buildings which are eventually also controlled automatically. The goal of our predecessor, U. Rutishauser
and A. Schaefer [?], was to fix the lack which the others had and this is learning a rulebase to be able to
control a building.

A building is a very complex system, since it behaves from a computational point of view completely non-
deterministic. [?] says that such an environment is best controlled by a multi-agent-system and calls his
approach Distributed Artificial Intelligence (DAI). Our predecessor tackled this challenge by using a layered
multi-agent-system. Different agents act independently and communicate indirectly with others about their
goals and actions they take. Every agent has its own field of responsibility, but to achieve the overall goal
of controlling a building they have to collaborate.

A control agent has a rulebase for controlling a local part of the building. These local areas are defined as
clusters which contain sensors and effectors. These clusters can match with the physical structure of the
building. The control agent receives sensory input and controls effectors by consulting a local rulebase which
is used for reasoning. It starts with only a few basic rules, but learns adaptively the behavior of the users
and environment by modifying its rulebase. These rules become more detailed and sophisticated whenever
the learning unit receives feedback from the enviornment (punishment/reward).

In a typical office building all sensors and effectors are attached to a fieldbus (like [?, ?]) and thier state can
be requested or set by sending a specific command via this fieldbus. To reach each device independently,

2

CHAPTER 1. INTRODUCTION 1.3. CONTENT

every device has its own unique address (e.g. the network variable in LonWorks). Our building is equipped
with the LonWorks system and therefore we pay no further attention to other products. But an integration
of other systems would be possible.

The bus agent acts like a proxy between the multi-agent-system and the dedicated fieldbus. To be more
exactly, it is strong coupled with a Lon-Network-Server (LNS). This server communicates over IP with the
iLon gateway. iLon is the real LonWorks-IP gateway and so the only device which requires direct access to
the LonWorks fieldbus.

A structure agent offers information about the structure of a building which each other agent who is interested
has to request. It reads the static structure once and has no abilities to notify any changes of the structure
to other agents. These changes could just be a new device or rather new reorganisation of a large office,
which is not unlikely in a commercial building.

The aim of our project starts here by detecting the dynamics of a building which can have strong impacts on
several other issues. Even the whole learning has to deal with a kind of moving target learning, it is essential
to understand and determine the dynamic behavoir of our intelligent building. More reasons why we think
it is worth to analyse this and discover the structure are mentioned in our motivation (see chapter 2).

For more details about the ABI system itself we refer to chapter 6 on page 24 of this document or directly
to [?].

1.3 Content

This document is structured into the seven parts Introduction (part I), Approach to the problem of structure
(part II), Architecture (part III), Design and Implementation (part IV), Results and discussion (part V),
Conclusion and Future Work (part VI) and Glossary and Bibliography (part ??).

The first part, Introduction (part I), gives a general introduction about the aim of our project. We introduce
first in the chapter Introduction (1) the current state of our Adaptive Building Intelligence project and
illustrates where open issues are and our work starts. We give also a list of papers which report about
related work. In the chapter Motivation (2) we say why it is worth doing our work, what our objectives are
and what results we expect.

The Approach to the problem of structure reviews first different possibilities to determine the relational
structure of a building and group them in independent clusters (chapter 3). We explain why we defined a
learning algorithm to discover the relationship and why to choose the normalized cut algorithm for clustering.
In theory (4) we ground our inspiration for defining a hebbian related learning algorithm and give a brief
summary of the normalized cut. And the chapter 5 gives an extensive explanation of our approach to the
problem of structure.

Architecture, which consists of the chapters system architecture (6) and software architecture (7) gives a
detailed introduction to the underlying architectural principles used within ABI. We illustrate also where
our new agent, Structure Discovery Agent, is located in the layered multi-agent-system.

Details about the implementation of our agent are given in part IV. First we justify design decisions in
chapter 8 and explain in chapter 9 why it is necessary to proceed the input data through filters to get ride
of useless data caused by damaged devices. Because we have to deal with really sparse data, a simulation of
the bus traffic is indispensable. The last chapter of this part, Simulation (10), explains its functions.

Chapter 11 evaluates the results of our approach. We discuss results and open issues in detail.

Part VI illustrates in the Conclusion (12) what has been achieved and what not within the context of the
project. Future Work (13) suggests what could be done in the future and lists potential topics for future
research projects to improve the Adaptive Building Intelligence.

3

1.4. RELATED WORK CHAPTER 1. INTRODUCTION

1.4 Related work

The basic ideas and principles of Adaptive Building Intelligence (ABI) were first developed by our predeces-
sors during the project ADA - An artificial organism [?] and Adaptive Home Automation (AHA) [?] which
were conducted at the Institute of Neuroinformatics in Zurich, Switzerland.

Ada is a project which regards a room as an artifical organism. She has like every organism an emotional
state and expresses herself and interacts with visitors. The goal of Ada is to dynamically change its overall
functionality and quality through an active dialog with visitors.

The other project, Adaptive Home Automation (AHA), was mainly an approach to control a building with a
static fuzzy logic rulebase driven by a multi-agent system. ABI is build on top of the preceding AHA project
and learns online to adapt the rulebase while running.

A variety of other related projects [?, ?, ?] try to make a building intelligent whereas the main objectives are
mostly the same: minimize the consumption of power and/or on the other hand to maximize the comfort
for its inhabitants.

Most of these project concentrate on making a room/building intelligent by learning to control it. But all are
learning this on top of a static structure. They lack the capability of detecting the dynamics of a building’s
structure, which is really essential to control several rooms/floors together, even since the environment is
completely inhomogeneous: people have different behaviors and can work on several places, large offices
can be reorganized frequently or new sensors/effectors get installed and have be controlled. Up to now we
haven’t found any related work which tackles this challenge and discovers the functional structure of such
an environment.

There are papers in the field of computer science, which are trying to cluster the architecture of the world-
wide-web and its documents. E.g. [?] regards web links as association like in the brain, and the strength
of the links can change depending on the frequency of use. They defined also a hebbian inspired algorithm
which adapts the strength of links. Based on this they show how the web can be structured.

Algorithms for detecting the structure of a network (e.g. Ethernet) are also interesting to review. But they
differ mainly in reverting to the amount of data and that each message carries a source- and destinationad-
dress.

4

Chapter 2

Motivation

Within this chapter we motivate why it is worth trying to discover the functional structure of a multisensor
environment and mention what we expect to gain in terms of results.

A multisensor environment, like a commercial building, is itself a complex environment and thus very inter-
esting and challenging to analyze and understand. It contains information about its state, but also records
the dynamic behavior of such an environment. The difficult task, however, is to understand this information
and cohesions.

We use a typical commercial building as our test environment equipped with many different sensors (e.g.
presence, temperature, illumination, humidity) and effectors (e.g. lights, window blinds, wall-switches). We
think such a building behaves not static like it was built, but rather totally dynamic and responds to its
inhabitants and the current weather conditions by changing its internal state locally.

This itself is interesting enough to look into in more detail. But also by considering our preceding project,
Adaptive Building Intelligence (ABI), and be able to review their learning algorithm it would be very appro-
priate to have a feeling about the dynamics of a building. Even since the learning is a kind of moving-target
learning and has to learn against a changing internal representation, it is indispensable to have a detailed
analysis and understand possible impacts.

Modern buildings which are equipped with a dedicated fieldbus need nowadays a human building manager
to explicitly specify which sensors can control which effectors. It would be thinkable to have a self-organized
environment which adapts and customize itself.

We want to prove that it is possible to gain functionally structured knowledge out of such an environment.
And furthermore we want to extend the current Adaptive Building Intelligence (ABI) system by an au-
tonomous agent, which discovers the functional structure online and deploys this information into the whole
multi-agent-system.

The learned structure has to be analyzed and compared with different models, like for example the physical
structure. We want to answer if it is possible to discover a useful structure at all. If it is, we would like
to analyze how many functional more or less independent groups can be detected and how does it perform
considering stability and placity?

We have to handle here real data caused by real persons produced while doing real work. This makes it even
more interesting but also challenging, not just to verify our approach in a more or less natural environment.
Results obtained from research in such a real environment are likely to be much more substantial then results
from a specially designed simulated environment.

These are surely enough reasons to justify a research project into that!

5

Part II

Approach to the problem of structure

6

Chapter 3

Determine functional relationship
between devices and partition them
into clusters

3.1 Overview

The main objective of our project is to group devices of a commercial building into clusters. Each cluster
should contain just functionally related devices, but there are several thinkable possibilities to measure or
define their relationship. Elements of a cluster have now a special similar feature like for example shape,
type, function, metric distance, orientation etc. One of the simplest way would be to group them depending
on their typ (blinds, lights, daylight, switch...).

But we are interested in the functional structure of a building and therefor like to group them into functional
more or less independent clusters. For this we have to find/define a measurement of the functional relation-
ship. Section 3.2 lists three different possibilities to determine this. We explain briefly their functions and
give reasons for choosing one or not.

Although we can measure the similarity we need another step to group them into several clusters. Section
3.3 surveys three thinkable clustering algorithms and lists thier dis-/advantages. We reason also, which are
the criterions to choose one and not the others.

3.2 Determine similartiy between devices

3.2.1 Correlation coefficient

The correlation coefficient (corrcoef) is a normalized measurement of the linear relationship between the
states of two devices. Uncorrelated data results in a correlation coefficient of 0.0, equivalent data sets have
a correlation coefficient of 1.0 and anti-correlated one of -1.0. The corrcoef can be graphical interpreted as
the cos(α), if α is the angle between the two data vectors (see figure 3.1).

For defining the corrcoef between two devices it is necessary to represent states over time as two vectors
(−→A and −→B). Thats possible when the n-th dimension of −→A corresponds with state at the n-th minute. The
higher the resolution the more exact is the correlation.

Disadvantages:

7

3.2. DETERMINE SIMILARTIY BETWEEN DEVICES
CHAPTER 3. DETERMINE FUNCTIONAL RELATIONSHIP BETWEEN DEVICES AND

PARTITION THEM INTO CLUSTERS

A = [-8, 12]
B = [-3, 14]

A
B

B

C

A

A = [-8, 8]
B = [8, 8]
C = [8, -8]

(1) (2)

Figure 3.1: (1) shows high correlated vectors in two dimensional space. (2) Vector −→A ist anti-correlated to
vector −→C and has no correlation to vector −→B .

• Huge memory requirements because it is necessary to keep all states over the measure period in memory.

• Devices of a building show an different behavior at different timepoints. For example lights and blinds:
During a sunny winter day the blinds are open and the lights are switched off. At the evening (if
nobody is in the office) the blinds are closed (save energy) and the lights are also turned off. This two
cases are mutually contradictory. Thus the corrcoeff is nearly zero.

3.2.2 Temporal dependent activity

The temporal connectivity methode detects the timedelay between two events of different devices. This
timedelay represents the correlation. The shorter the timedelay the higher the correlation. Correlations in
a graph can be represented in a directed, weighted graph, where each node is a device and edge weighted
edge a correlation. The adjustment of the edges is event-driven.

Advantages:

• All calculations are event driven.

• The states of devices has no influence on the correlation. Thus there are also no problems with different
behaviors on different timepoints.

Disadvantages:

• The resulting graph is a directed graph. That means that between two nodes A und B two correlations
are defined (A ⇒ B and B ⇒ A). But most clustering algorithm require a directed graph.

• A maximum border line for correlations does not exist. They can increase to infinity.

• The algorithm detects only behaviors which happen in a small timewindow, because if this would be
to large every edge would be adjusted.

3.2.3 Genetic algorithm

Genetic algorithms seek after persistent patterns in the event stream. Depending on the complexity of
patterns the algorithm requires huge amounts of memory and CPU time.

Advantages:

8

CHAPTER 3. DETERMINE FUNCTIONAL RELATIONSHIP BETWEEN DEVICES AND
PARTITION THEM INTO CLUSTERS 3.3. CLUSTERING / PARTITIONING

• Determined patterns represent the behavior of the users. The patterns could be used as an input for
a further learning algorithm.

Disadvantages:

• The timedelay between two events isn’t considered. Thus it is possible that a pattern ABC on a later
date is exacly repeated (temporal viewed), but between the event sequence ABC other events can occur
(e.g. ArBtC).

• It is a difficult task to determine the structure based on the founded patterns.

• For reliable predictions we would use a huge amount of data.

3.3 Clustering / partitioning

3.3.1 Minimal spanning tree

The basis of the minimal spanning tree (MST) is a correlation graph. To cluster this graph, MST deletes
the edge with the largest lengths (length can be defined by the Euclidean distance). The devided subgraphs
(figure 3.2) can further be devided recursively until it reaches a threshold [?].

A

B

C
D

E

F

G10

2

2

2

4

4

edge with the maximum length

Figure 3.2: Divide graph on the base of Euclidean distance into two clusters by using the minimal spanning
tree algorithm.

Advantages:

• Easy to understand and implement

Disadvantages:

• The stop criterion is a fix threshold.

• It first devides individual devices from the main graph.

3.3.2 K-means clustering

The k-means algorithm is popular and easy to implement. As a precondition, it is necessary to define the
number of clusters, represented by k. The algorithm consists of four parts:

9

3.4. WHICH ONE FITS BEST?
CHAPTER 3. DETERMINE FUNCTIONAL RELATIONSHIP BETWEEN DEVICES AND

PARTITION THEM INTO CLUSTERS

1. Choose the number of clusters k and define their center randomly.

2. Assign each device to the closest cluster center.

3. Recompute the center of each cluster (incoporate all devices of the cluster).

4. Reassign each device to the closest (new calculated) cluster center.

5. If the assignment has changed start again with step three. Otherwise the local minimum is found.

Advantages:

• Easy to understand and implement

• complexity is linear - O(n), where n is the number of devices

Disadvantages:

• The number of clusters is fixed.

• A metric distance is used for correlation (to define center of cluster).

• Derived clusters may be placed only on local minimum.

3.3.3 Normalized cut

Recently several new algorithms were developed in the field of computer vision for segmenting an image.
One of them, Normalized cut developed and published by J. Shi and J. Malik [?], uses not just the minimum
cost to find an optimal cut to segment an image into two sets, rather it computes the normalized cut as a
fraction of the total edge connections to all other nodes in the graph. Thus the optimal one does not devide
first individual pixels at the border of an image.

They transform the image into an undirected, weighted graph before segmenting this. The weights represents
a feature (brightness, distance, color, etc.).

Advantages:

• Does not divide individual devices

• Builds up a binary tree

• No metric distance required

Disadvantages:

• Criterion for cancel subpartitioning a graph is also a threshold

3.4 Which one fits best?

3.4.1 Measure similarity

Within the limits of this work, we survey only the first and second illustrated algorithms. We tried first
to determine the correlation coefficient with a constant timestep of 30 seconds. But the originated graph
exhibits to diffuse correlations. Probably the result can be improved with a much smaller timestep. Thereby

10

CHAPTER 3. DETERMINE FUNCTIONAL RELATIONSHIP BETWEEN DEVICES AND
PARTITION THEM INTO CLUSTERS 3.4. WHICH ONE FITS BEST?

the requirement of memory would increase. Furthermore the problem of different behaviors at different
timepoints isn’t solved.
We assumed that the most information about relationship between devices is provided by the temporal
activity of devices. Thus we choose an Hebbian style learning algorithm to measure the similarity .

3.4.2 Clustering / partitioning

The k -mean algorithm bases on a metric system. But our reward map is not unambiguous convertible into
a metric graph. Also the starting position of defining the number of clusters is not desirable.
Our first implementation was a kind of minimal spanning tree (MST) algorithm. But mostly it has clustered
groups with single devices and such with lots of devices.
The normalized cut algorithm has the benefit that it discovers also the dependency between the clusters and
represents this as a binary tree. Because it tries also to maximize the cohesions within the subsets, it does
not segment predominantly individual devices.

11

Chapter 4

Theory

Like mentioned in the last chapter 3.4 we have chosen two concepts/algorithms to determine the functional
relationship between devices and afterwards group them, if possible, hierarchically. In this chapter we explain
briefly the theory of the hebbian learning to build a directed and weighted graph. And secondly we also give
a short introduction into the normalized cut algorithm which we use to partition the graph and determine
subgraphs.

After each section we try to explain where we see the bridge to our problem and why we have chosen this
kind of algorithm. But for closer details of this theory we refer to the literature where these two concepts
are discussed in several papers.

The results of applying these concepts/algorithms to our problem are discussed and mentioned in the result
chapter 11 at the end of this document.

4.1 Hebbian Learning

In 1949, Donald Hebb [?] wrote: When the axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

Figure 4.1: Two neurons, which are connected together over a synapse.

As a result, a learning method evolved for artificial neuronal networks, which was named after his inventor
Hebbian learning. It is an instance of an unsuperviced learning procedure, where weights between each node
from a network are ajusted so that they represent the relationship between the nodes. Each node stands for
a neuron and each weight between neurons represents a directed synapse. The change of a synapse depends
on the firing activity of the post- and presynaptic neuron. But this adjustmant can only be influenced by

12

CHAPTER 4. THEORY 4.1. HEBBIAN LEARNING

these two neurons, a third neuron which is connected with a synapse to one of the others can’t change the
weight (see figure 4.2).

A

B

k

ij
w

j

i

Figure 4.2: Only the firing activity of neuron A and B can adjust the weight wij . Another neuron k can’t
influence it.

Hebb’s proposal was an inspiration for several experiments on the synaptic plasticity in the last three decades.
But he formulated his principle on purely theoretical grounds. More than 20 years later [?, ?], it was proved
by Bliss and Lomo the first time experimentally. Though Hebb realized that a such meachanism could
help to stabilize specific neuronal activity patterns in the brain. He also said if neurnal activity patterns
correspond to behavior, then stabilization of specific patterns implies learning of specific types of behaviors.

Hebbian learning is interesting in cognitive science because it is unsupervised and has a local learning rule
which means that it can be applied to a network in parallel. It is simple and needs very little computation
and furthermore it is biologically plausible.

W. Gerstner and W. M. Kistler [?] defines Hebb’s ideas more precise and mentions that it requires at least
six aspects to formulate a useful plasticity model:

Locality means that the learning rule for the adjustment of synapse wij connecting neuron j to neuron
i shuold depend only on the firing activity of j and i and not on the state of other neurons(see also
figure 4.2).

Cooperativity Hebb’s formulation ’takes part in firing it’ implies that both the pre- and postsynaptic
neuron must be active to induce a weight increase. It furthermore suggests a casual relationship
between the firings.

Synaptic depression Hebb’s original proposal gives no rule for a decrease of synaptic weights. It only
refers how a synaptic can be strenghtened. But because there is no bound on the synapsis weights it
is not unproblematic. Often a decay function can fix this problem.

Boundedness The synaptic weights should be bounded in a range of 0 ≤ wij ≤ wmax where wmax is the
maximal weight value that a synapse can have.

Competition It is maybe a good feature to introduce competivity which means: if one synaptic weight
increases, it does this at the expense of others. These have to decrease first.

Long-term stability In many learning theories weights are only changes during a learning session and are
taken afterwards as fixed parameters. But here the weights are adapded online and care must be taken
that previously learned information is not lost eg. by overwriting it.

Weight wij of a connections from neuron j to i is considered as a parameter that can be adjusted. The
process of parameter adaption is called learning and the procedure for adjusting the weights is referred to
as a learning rule:

The hebbian learning rule specifies how much between two neurons should be increased respectively decreased
and this in propotion to their activation. If xi and xj are the activations of two neurons, Wij is the synaptic
weight between them and γ the learning rate. The rule is defined (in its basic form) as:

13

4.1. HEBBIAN LEARNING CHAPTER 4. THEORY

∆Wij = γ · xi · xj

where ∆Wij is the change of the weight Wij .

4.1.1 Temporal aspects

However Hebb formulated, ...and repeatedly or persistently takes part in firing it..., it’s a little vague. It
means that both neurons have to be active in order to strengthen a synapse. And active itself can also have
several meanings. When are two neurons active together? This temporal aspect has to be defined for each
problem itself, but it has an important influence in the value of strenghtening / decreasing the synaptic
weights.

The ∆t between the firing of the pre- and the postsynaptic neuron is essential for the value of strengthening
synaptic weights. There are experiments which have a negative exponential weight function 4.3, which
calculates the ∆Wij by taking ∆t as its argument.

0-dt +dt

symetric
asymetric

0 time [ms]

Figure 4.3: The left figure illustrates the two learning windows. Within the asymetric windows the weight
of the synapse gets an additional meaning: causality. The right figure shows a proposed exponential weight
function to strenghten a synapse. How much the synapse gets potentiated is depending on the timedelta
between the two firing neurons.

If now a a neuron A fires slightly before another B, the synapse weight wAB between them will be increased.
Contrary, if the neuron B fires before A, the connection wAB will be depressed. If the trend of this weight
is persistent increasing, it is called long-term potentiation (LTP) and if it is decreasing long-term depression
(LTD).

Often a so called learning window 4.3 defines the border how long two firing neurons are considered to
be active together. And if this window is asymetric the weights can also say something about the casual
relationship between two neurons, because only firing sequences are considered where the presynaptic neuron
was active slightly before the postsynaptic one.

4.1.2 Adaption to a multisensor environment

In the previous section the theory of hebbian learning is explained. Here we want to make the bridge from
this theory to a multisensor environment, like for example a typical commercial building. Such a building is
equipped with several different sensors and effectors (lights, blinds, wallswitches, presence detector, outside
sensors etc.). We think now an environment like this could have some similarities to neurons. The functional
structure of them can maybe derived from the firing activity of each device (which stands for a neuron).

We want to examine, if we can also apply the hebbian learning here to discover the functional structure of
a building. We think that devices which are active together have a stronger casual relationship than others
which implies that they belong together somehow. This can even correspond to the physical structure. For
this we build a network (we call it graph) where every node has an edge to every other node. The weight

14

CHAPTER 4. THEORY 4.1. HEBBIAN LEARNING

of each edge is dynamically adapted and this online. The edges are directed and presents therefore also the
casual relationship.

We illustrate this mentioned process in the next chapter 5 in detail.

15

4.2. NORMALIZED CUT ALGORITHM CHAPTER 4. THEORY

4.2 Normalized cut algorithm

J. Shi and J. Malik [?] propose a new automatic grouping algorithm, especially for segmentation of images
in the field of computer vision, where they try to extract the global impression of an image. We get inspired
by this algorithm, because they treat an image as an weighted undirected graph. The weights of the graph
represents the distance between two nodes as well some features (eg. of the image: brightness, color, etc.)
which can influence the weight.

Other graph partitioning algorithms measure the cut as the sum of all edges which have to be removed:

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (4.1)

where u are the devices which are in set A and v those in set B and the weight of the edge between node u
and v is defined as w(u, v).

The goal is to minimize this cut, but this means that it first partitions individual nodes (see figure 4.4).

Figure 4.4: On the right a bad minimum cut which partitions just one individual node. It would be better,
to partition first the group on the left with a higher density from the right one. The normalized cut tries to
meet this need with a different calculation of the minimum cut.

Shi and Malik measure the disassociation between two groups by the ratio between the minimal cut and
the total of edges from a group to all other nodes, and accumulated for each group. They call this size
normalized cut (Ncut):

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)
assoc(B, V)

(4.2)

where assoc(A, V) =
∑

u∈A,v∈B w(u, v) is the total connection from nodes in A to all nodes in the graph V
and the same for assoc(B, V) with nodes in B.

Now an individual node has a higher Ncut to partition it alone. This results in finding a cut trough the
graph and not just at the boundary.

They measure also the normalized association within a group by the ratio between the sum of edges inside
of a group and the sum of edges connecting nodes inside the group with all others in the graph.

Nassoc(A,B) =
assoc(A,A)
assoc(A, V)

+
assoc(B,B)
assoc(B, V)

Beside to have a Ncut as small as possible, they try to achieve a high normalized association within groups.
And after transforming equation 4.2 they get:

16

CHAPTER 4. THEORY 4.2. NORMALIZED CUT ALGORITHM

Ncut(A,B) = 2−Nassoc(A,B)

where both goals, minimizing the disassociation between groups and maximizing the association within a
group, can be satisfied together.

4.2.1 Computation

First they compute several matrices: W is a symmetric nxn matrix with each individual edge weight. D is a

nxn matrix with d on its diagonal, where d(i) =
∑

j w(i, j). Further b =
∑

xi>0
di∑

xi<0
di

, where x is a n-dimensional

vector. If xi > 0 node i is in partition A, and if smaller it is in B.

After several transformations (where a term that contains x is substituted with y) they prove that they can
minimize

yT (D −W)y
yT Dy

(4.3)

with the constraint that yi ∈ {1,−b} and yT D1 = 0 (where 1 is a vector with ones), if they solve the follwing
generalized eigenvalue system:

(D −W)y = λDy (4.4)

Further they say that the eigenvector y of the second smallest eigenvalue, by solving equation 4.4, is a good
approximation for the normalized cut problem. An element of this eigenvector belongs to the first partition
A if yi > 0 or if yi < 0 it belongs to the other partition B.

0 2 4 6 8 10 12 14
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
second smallest eigenvector (first cut)

index in eigenvector (represent device number)

Figure 4.5: A second smallest eigenvector: All elements above zero are in one partition, the others which
are below zero are in the other partition.

Figure 4.5 shows an eigenvector from a second smallest eigenvalue. This vector is an approximation to the
discrete one. There are 14 nodes, whereas the first five are belonging to one group and node 6-14 to the

17

4.2. NORMALIZED CUT ALGORITHM CHAPTER 4. THEORY

other. Shi and Malik say that in their experience the second smallest eigenvalue is very close to the optimal
normalized cut value, but there is little theory on how much they can deviate.

To conclude, Shi and Malik show that an approximation for the Ncut can be found efficiently by solving a
generalized eigenvalue problem, although minimizing the Ncut itself is exactly NP-complete.

4.2.2 Algorithm

Their algorithm is defined like this following enumeration:

1. Construct a weighted undirected graph G = (V,E), where each edge represents the similarity between
two nodes.

2. Solve (D −W)x = λDx for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to partition the graph into two groups.

4. Decide if the current partitions can be divided again by comparing the eigenvalue with a threshold.
Partition each group recursively as long as its eigenvalue is smaller than the threshold.

4.2.3 Transfer to clustering our hebbian learned connection graph

And why should we even use this normalized cut algorithm to partition our graph? First it has the good
feature that it does not try to cut individual nodes first. In a typical commercial building it is not likely
that a device is installed somewhere alone, most of them appear in a group (eg. inside of a room). And even
if it is our goal to determine groups which are the basis of any further controlling build on top of this, we
can’t controll an area with just one device because we need other input parameters.

Another nice feature is that it partitions the graph in a divisive way where the result is a binary tree. Maybe
we can benefit from this hierarchical relationship between groups by transfering any policy between groups
in a future step.

18

Chapter 5

Our approach to the problem of
structure

After surveing the different measurements of similarity and clustering algorithms, we decided to use a kind
of hebbian learning to determine the relationship between devices and the normalized cut algorithm for
partitioning our graph in chapter 3.4.

This chapter explains our process in detail and refers for discussion also to chapter 11. In short, our process
is defined as follows:

1. Determine the relationship between devices by the temporal occurrence of thier state updates.

2. Transform directed graph in a undirected graph.

3. Partition the graph and try to find any subgraphs in it.

4. Track the result what means to merge the new derived structure as good as possible with the old
structure.

It is also worth to mention that our process is totally event-driven and thus adapts online to any change.
The following sections illustrates each step in detail whereby any problems are also discussed.

5.1 Determine functional relationship

Our analysis (see time analyis results 11.2) has shown, that our assumption is mostly true, where we say if
a local area of our multisensor environment changes, it was caused by more than just one state update of a
device. E.g. if a user enters a room and switches on the lights or if the blind are closed it gets dark and the
user leaves or needs artificial light by switch them on.

Like we mentioned in the theory chapter 4.1 scientists use a hebbian learning rule to adapt the strength of a
synapse between two neurons. And these synapse can represent a learnt behavoir if they are strong enough.
We think a commercial building can also be seen like a network of neurons and we try to determine the
functional relationship with the activity of each device.

We build a graph with n nodes (corresponds to the number of devices) with a maximum number of n·(n−1)/2
edges. Each edge has a weight and represents the realtionship with the node on the other side of the edge.
To gain also a casual relationship we use n · (n− 1) edges to have a directed, weighted graph.

Now, each time two devices (nodes) are active together, we adjust the weight of the directed edge depending
on which one was slightly before. The most important information to adjust the weight of an edge is the

19

5.1. DETERMINE FUNCTIONAL RELATIONSHIPCHAPTER 5. OUR APPROACH TO THE PROBLEM OF STRUCTURE

temporal aspect. Like other experiments in neuroscience have shown, the synapse gets potentiated with
a maximum if the two neurons are firing almost together. An often mentioned model is for example the
spike-time-dependent-plasticity (STDP). There it is proposed [?, ?, ?] to use an exponential function to
calculate the value of strengthening a synapse.

This was an inspiration for us to design a similar function but analyse also different other functions. We
call this functions reward functions and have also defined some constraints: maxreward is the maximum
value which a edge can be potentiated at once, s is a smooth factor to stretch the exponentional function
horizontally. Because we have seen that our system can have a delay to deliver the messeges, gap is a small
number to bypass such delay errors. The result chapter 11.2 gives a more detailed explanation about this
problem.

Now, the exponential reward function is defined like this:

∆t = ti+1 − ti (5.1)

R(∆t) =
maxreward

e
∆t−gap

s

(5.2)

where ti and ti+1 are the timestamps of the pre- and postsynaptic firing.

A known problem of hebbian learning is that the reward value could increase to infinity. Often a decay is
used to bound this value in a specific range. We use a constant decay value, which depresses the weight each
time a neuron is firing. If slightly afterwards another is also firing, this synapse gets potentiated again. But
if not it decreases, what can be an sign that this synapse was falsly potentiated once or is now a unvalid
learned sequence. The total and delta reward are defined as

ri+1 = ri · decay + ∆r (5.3)

∆r = R(∆t) (5.4)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

current reward

tim
e

de
lta

 [s
]

increase reward

decrease reward

Figure 5.1: Limit value for keeping a constant reward. If ∆t is larger it decreases, if it is smaller it increases.

Figure 5.1 shows if a weight gets rewarded with a specific ∆t or if the reward is smaller than the decay
value. The blue curve shows the limit value where the reward value gets decreased by a decayvalue and

20

CHAPTER 5. OUR APPROACH TO THE PROBLEM OF STRUCTURE5.2. PARTITION GRAPH INTO SUBGRAPHS

afterwards strengthened for a specific ∆t with exactly the same value. The total reward value is constant.
It also illustrates that connections which have a high reward can only keep this by small ∆t (smaller than
1s). Otherwise it receives less rewards than it gets decreased.

5.1.1 Transform directed reward graph into undirected

Our hebbian algorithm produces as result a directed reward graph. But the normalized cut algorithm needs
as input a undirected graph. Thus it is necessary to convert each bi-directed relationship into an undirected
(figure 5.2). There are two opportunities thinkable:

1. mean of both associations

2. choose higher association

Figure 5.2: Both directed association must transform into undirected

If two devices mostly fire in the same order then the choice of the maximum is a good idea. In this case the
correlation in one direction is extremly high and in the other nearly zero. In our system it is not guaranteed
that two sequenced events always arrived in the same order (we use asynchrone communication). Due to
this fact we calculate the directed association by the mean of both (see also ”Blind pairs” 11.3.3 p. 53) but
we also know that this is a very critical point.

5.2 Partition graph into subgraphs

Also event-driven we partition our graph into several subgraphs and try to extract clusters which are almost
independent, but contain devices which have a high relationship. The normalized cut algorithm calculates
the minimum cost to cut several edged of the graph. It always partitions a graph into two subgraphs as long
as the sum of all removed edges is lower than a threshold.

The result is a structure of several clusters that are hierachically dependent. Each cluster represents a group
of related devices and these groups can be the basis of any further learning.

5.3 Track structure of clusters

Each time we partitioning a snapshot of the hebbian learnt graph, the normalized cut alorithm builds a
new hierarchical structure. Up to now we transfer the old structure into this new structure, but it would
be imaginable to apply changes not until it verifies itself over a longer time. This could be a possibility to
stabilize the structure.
In terms of running a control agent for each cluster it is necessary to keep as much information (about
learned rules) as possible. Also we can’t destroy all old clusters and create the new ones in accordance with
the new structure. Each learnt cluster should transform into the most approximated new cluster by add and
remove devices.

21

5.3. TRACK STRUCTURE OF CLUSTERSCHAPTER 5. OUR APPROACH TO THE PROBLEM OF STRUCTURE

Reduce into a flat hierachy

It is a complex task to track the hierarchical information and use this to transform the old into the new
structure. Because of that we transform it at the moment into a flat hierarchy. As a result we gain a one
layer structure with the bottom clusters of the binary tree (figure 5.3) and loose the hierachical dependencies.

A
B

C
D

E
F

G
H

I

A
B

C
D

E
F G

H
I

Figure 5.3: Transmutation of a hierarchical structure into a flat structure.

We know that it could be possible to track the structure in more sophisticated way, but up to now we haven’t
such an implementation.

Reallocation of clusters

First we compute which cluster from the old structure belongs most to the ones form the new structure.
Then we add/delete devices from each old cluster until they match with the new structure. This means not
to have any losses of information, as we ensure that each cluster corresponds to one of the new determined
structure.

22

Part III

Architecture

23

Chapter 6

System Architecture

This chapter explains the architecture of our test environment. We mention how we have access to all devices
of the building and how they are notifying any state updates.

6.1 Basic principles

A typical office building is equipped with several sensor and effector devices. Mostly these are connected
to a fieldbus and can be controlled/accessed from one point. There a building manager can set some fix
constraints between the devices (eg. wall-switch 1 controls light 1). Figure 6.1 shows the principle of our
test environment at the Institute of Neuroinformatics. Beside the devices inside of the building, there are
also some installed outside and measures the sun illumination, humidity, etc.

74

8575

Presence

Light

Blinds

Outside
Sensors

LonWorks

Gateway

IP

MAS

Key

78 80 84 86 88

79 87

2628

Figure 6.1: A floor of a building structured into rooms. Each rooms has sensors (eg. presence, daylight) and
effectors (eg. lights, blinds, wall-switches).

All sensors and effectors of all rooms are connected to the same network (LonWorks). This network is,

24

CHAPTER 6. SYSTEM ARCHITECTURE 6.1. BASIC PRINCIPLES

with the help of a gateway, accessible from an IP based network. Each device has an unique LonWorks
- Networkvariable (NV), and trough this gateway each NV can be set or requested. It is also possible to
subscribe an interest in state updates for a specific NV.

Unfortunately we have seen that we can not subscribe to an arbitary number of NV. If there are too many
subscribers, the system does not deliver any update messages. We guess it could be an overload of the whole
fieldbus, because there was also a problem with the presence detectors because of that.

25

Chapter 7

Software Architecture

This chapter gives a brief overview of the AHA system which was developed by U. Rutishauser and A.
Schaefer. For more details we refer to their diploma thesis [?]. First a short overview explains the architecture
of their multi-agent-system (MAS) and used standards. Afterwards we show the dependencies between all
agents and where our new agent is located and who are its communication partners.

7.1 Overview ABI System / Standards

The AHA System consists of a MAS which can run distributed on several machines. This MAS is struc-
tured into several independent and autonomous agents, where each of these agents pursues it is own goals
independently and cooperates with other agents if necessary.

The AHA multi-agent-system is developed with the ABLE (Agent building and learning environment) frame-
work [?, ?], which fulfilles the java agent specification (JAS) [?]. JAS itself is an implementation of the FIPA
abstract agent standart. FIPA (Foundation for Intelligent Physical Agents) [?] defines a set of abstract con-
cepts like agent, agent-direcotry-service and agent-communication-language (ACL) but it does not provide
any concrete implementation. A lifecyle service, which is responsible for creating new instances of agents
and destroying them, is not defined in FIPA and JAS, because it is too implementation specific. The AHA
system uses the ABLE lifecycle service implementation.

The whole messaging between agents is done asynchronously, which makes agents on the one hand indepen-
dently but on the other hand more difficult to design. Agents can communicate directly (1:1) or indirect
(1:n) by consulting a distribution agent. This agent is resposible for the indirect message flow, whereas
each agent can subscibe to a topic and it maintains a list with all topics and subscribers. To support a fast
communication it uses a threadpool which is capable to process a high amount of messages. In the MAS
serveral message types can be sent, and it is exactly defined which agent can send/receive which message
types. Consult [?] for a detailed definition of all possible message types.

7.2 Agents and their interaction

As mentioned the AHA system consists of several independent agents, which are trying to reach a goal
together. Whereby an agent can by no means be restricted to be some part of software, as it can also be a
person or a piece of hardware.

Figure 7.1 shows the dependencies between the agents of our AHA system. The solid line shows the directed
dependency. It is also show by the dashed lines that each agent needs the distribution agent to communicate
with the others asynchronously.

26

CHAPTER 7. SOFTWARE ARCHITECTURE 7.2. AGENTS AND THEIR INTERACTION

Control
Agent

Structure
Agent

But
Agent

Sturcture
Discovery

Agent
Distribution

Agent
PC

Agent

Figure 7.1: Dependencies between agents in our multi-agent-system (MAS).

Each agent has a different specific function/goal which it trys to reach. The following sections give a short
description of every agent and explain their responsibilities.

7.2.1 Control agent

The control agent is responsible for the learning and controlling of a single room itself. Thereby we treat a
room more abstract as a functional cluster and not just with its physical borders. Such a cluster could also
contain devices which have another similarity than just being in the same room (eg. the same orientation).
However, it requests this information from a structure agent which delivers all devices belonging to the
requested cluster.

It controls all effectors and subscribes interests in all sensors of its cluster. A typical cluster can also have
subclusters, because the structure is build hierachically. Depending on the number of subclusters the control
agent instanciates a number of learning units.

7.2.2 Structure agent

The task of the sturcture agent is to offer any information of the static structure of a building. While
starting it loads a configuration file, which contains each device in a hierarchical structure.

7.2.3 Structure discovery agent

The structure agent can only provide information about the static structure whereas the building behaves in
a dynamic style or rather its inhabitants. To learn about such an environment it is essential to understand
and record its dynamic behavoir. The insights must be the basis for any further learning. The structure
discovery agent subscribes interests to all active devices and learns the functional relationship between them.
In a second step it partitions them hierachically into several clusters.

7.2.4 Bus agent

The Bus agent provides the one and only interface to the fieldbus and also the access to every sensor/effector-
device in our environment. It directly communicates with the LonWorks gateway and acts like a proxy

27

7.2. AGENTS AND THEIR INTERACTION CHAPTER 7. SOFTWARE ARCHITECTURE

between the agents and the gateway. It is also the bus agent who notifies any interest in a NV to the
gateway and does a subscribtion.

7.2.5 PC agent

The PC agent is a new agent developed by Tobi Delbruck (tobi@ini.phys.ethz.ch). It serves as a better
presence detector, because we had several problems with the normal presence detector caused by a problem
of the manufacturer.

The new agent acts as a server with serveral thin clients running on different workstations. And so they can
also serve as a personal presence detector, because everytime the user works with/leaves his computer, the
client notifies the PC agent about this. The PC agent spoofes now the control agent by send an artificial
presence message.

Another feature is, that the agent can give each client individual accessions to control several effectors. A
user can so control for example the lights and blind in his room.

7.2.6 Distribution agent

Like already mentioned, the distribution agent makes sure that an asynchronous communication between in
our MAS is possible. To serve every request as fast as possible it has a threadpool. It also maintains for
each interest topic a table with its subscribers. If it receives message under a spefic topic, it delivers this to
all subscribers. As a result the agents do not have to know something specific about eachother.

7.2.7 Virtual person agent

Another agent which was developped mainly to personalize the system was the virtual person agent. In
future it is thinkable that many are carrying any kind of mobile device (mobile phone, pda, etc.) and
these have to register at the closest access point to gain access e.g. for the internet. This agent detects an
individual person when he is subscribing at an specific access point.

28

Part IV

Design and Implementation

29

Chapter 8

Structure Discovery Agent

8.1 Functionality

The aim of the Structure Discovery Agent (SDA) is to discover the functional relationships between all
devices in a office building and group them to independet clusters. Further devices of this clusters can be
controlled by the AHA system. To achieve this, the SDA knows all devices and will be informed about all
state updates of them.
For a productive use, it would be necessary to integrate some management and autosave function into the
SDA. After a restart the system should be able to recover itself.

8.2 Messages in AHA

The asynchronous communication between agents is realized via the Distribution Agent and special defined
AHAMessages. An AHAMessage contains always, following information:

• Reference of the sender

• Message type

• List of parameters (key/value pair)

The SDA use three different message types: SUBSCRIBE INTEREST, UNSUBSCRIBE INTEREST and
VARIABLE UPDATE. Each message type must contain some defined information as parameter list (more
information [?]).

SUBSCRIBE INTEREST

At each startup, the SDA register its interest to each device by sending a SUBSCRIBE INTEREST message.

UNSUBSCRIBE INTEREST

If a device is no longer interesting for the SDA, it has to unsubscribe its interests by sending an UNSUB-
SCRIBE INTEREST message.

30

CHAPTER 8. STRUCTURE DISCOVERY AGENT 8.3. IMPLEMENTATION

VARIABLE UPDATE

Every state update of a device is notified by the Bus Agent by distributing a topic-based message (which
contains the device ID and the new value) via the Distribution Agent. This update message is delivered to
all subscribed agents.

8.3 Implementation

8.3.1 Design

The SDA is composed of sevaral classes. The diagram 8.1 shows the associations between the most important
classes. Here we mention just briefly the responsibilities and functions of each class. For any further details
consult our javadoc documentation.

Basic classes

EventCollector
The EventCollector is like a controller for structure discovery. It receive event notifications from the Struc-
tureDiscoveryAgent (or EventSimulator). In chapter 8.3.2 the data flow of EventCollector is showed.

HebbianRewardMap
It manages the directed reward graph and updates all edges driven by notifications from the EventCollector.
At every update it increments a statistic of an individual fire counter for each device itself.

NormalizedCut
In a constant timestep the NormalizedCut is called by the EventCollector. It manages the partitioning of
the reward graph. The actual partitioning algorithm is implemented in the Partitionizer.

Partitionizer
It partitions the reward graph into subclusters. This process is called again (recursively) until it reaches a
defined threshold.

ClusterTracker
The ClusterTracker try to transfer the old structure into the new derived structure. This transfer should
keep as many information as possible from the old system.

StructureDiscoveryAgent
This agent suits as an interface between the AHA system and the EventCollector. It subscribes itself to
topics in order to receive update messages of the devices. In further plans it should manage any backup and
recovery functions and inform cluster agents of modifications.

EventSimulator
For testing the algorithms we used this simulator instead of the StructureDiscoveryAgent. Based on the log
file busTrafficLogger.txt it simulates a real event stream.

EventFilter
This is an interface for an specific implementation of a filter. Filter are useful to get rid of useless events
caused by the fieldbus. Chapter 9 gives more information about our realized filters.

Cluster
The class Cluster represents a found cluster. It contains devices and subclusters.

31

8.3. IMPLEMENTATION CHAPTER 8. STRUCTURE DISCOVERY AGENT

Figure 8.1: UML class diagram of SDA

32

CHAPTER 8. STRUCTURE DISCOVERY AGENT 8.4. USED FRAMEWORKS

Helper classes for analysing

To analyse different aspects of the SDA we have implemented some helper classes. In regular work they
wouldn’t be imporant.

ElementInfoMapper
The class ElementInfoMapper containes all nativ information about a physical building (existing rooms and
their devices). This information are used to compare the discovered structure with the physical structur.

ClusterStatistic
Generate a statistic of occurence of different cluster sizes and of occurence of different cluster combinations.

ClusterStatisticAllocation
Create for each device a statistic of the correctness allocation.

ClusterStatisticQuality
Each derived cluster is allocated to the physical room with its highest similarity. This class records the
mean quality of allocated clusters for each room. Quality mean: How many devices (percent) does a cluster
contain just from one physical room.

EventDelayAnalyser
The EventDelayAnalyser records all timedelays and generate the following statistic:

• Lists of timedelays inside each room and between each room combination.

• How often which device-device sequence occurs (inside each room and between all rooms).

• Listing of timedelays for each device-device combination

EventSequenceAnalyser
Helper class for EventDelayAnalyser.

EventOccurrenceCounter
The EventOccurrenceCounter counts the number of released rewards for each device. Thereby it separates
between rewards inside and outside the same room.

8.3.2 Data flow

The EventCollector is event driven by the SDA or the EventSimulator. The general process flow is illustrated
in the collaboration diagram 8.2. To save CPU time we do not cluster the reward graph each time we receive
an event. Steps 1.3 and 1.4 of our approch 5 are only executed once in an hour.

8.3.3 Visualisation

We implemented two different GUIs for illustrating the discovered structure. The first implementation
(screenshot 8.4) shows a flat structure. Because the source data for drawing this structure are tracked
by the ClusterTracker the order is more stable as in the other, second (hierarchical) GUI. The hierachical
visualisation (8.3) shows a binary tree as grouped sets. Two groups are always combined with a rectangle
and the label describes the position of the cluster and its relatives (A means left and B right pratition).

8.4 Used frameworks

Our SDA uses other frameworks, which we want to mention here briefly:

33

8.4. USED FRAMEWORKS CHAPTER 8. STRUCTURE DISCOVERY AGENT

Figure 8.2: Collaboration diagram for incoming event and reclustering

Figure 8.3: Screenshot: Hierarchical cluster viewer

34

CHAPTER 8. STRUCTURE DISCOVERY AGENT 8.4. USED FRAMEWORKS

Figure 8.4: Screenshot: Viewer for flat cluster structures

ABI

ABI is an abbreviation for Adaptiv Building Intelligence [?]; a framework for a building control system based
on a multi-agent-architecture developed by Ueli Ruthishauser and Alain Schaefer. The SDA expands this
framework with new features (more details about ABI in chapter 7 on page 26).

ABLE

The Agent Building and Learning Environment (ABLE) [?, ?] is a java framework, component library, and
productivity toolkit for building intelligent agents utilizing machine learning and reasoning. The ABLE
research project is made available by the IBM T.J. Watson Research Center.

Colt

Colt [?] are open source libraries for high performance scientific and technical computing in java. We use
them especially for matrix computing.

Log4j

Log4j [?] allows a controlled debug logging with different log levels.

35

Chapter 9

Filtering

Our test environment uses the LonWorks network which is a popular commercial building fieldbus (described
in chapter 6). But this network and the attached devices don not work reliable enough. We found several
dubious behaviors, e.g. a wallswitch was uptight and sent a SET OFF command every 30 seconds or presence
detectors which are toggling all the time and sending this in an interval of 90 seconds.

Because of this we had to implement some filter functions. Every event must first pass all filters before it
can eventually reach our discovery algorithm.

We list here the most important filters and explain their functions:

9.1 Similar Event Filter

In principle this filter blocks all events from a device if they are similar to the last passed one. Sometimes
the transport layer lose some events. Thereby it is possible that the light is turned off and we never know
something about this. Later if the light is switched on this filter blocks the event (because it thinks that the
light was never switched off). For this case the filter has a timeout to block similar events (this timeout is
re-triggered with each blocked event).

9.2 Presence Detector

The real signal of the presence detectors (PD) just reports movements. By every movement of a person the
PD sends a OCCUPIED signal. But if the person moves it is likely that he is just moving a little and does
not change the state of his environment by switching on/off any devices. And this would result that the
hebbian learning reduces the correlations. Due to a firmware bug in the PD’s they switch into an unstable
state and send every 90 seconds an OCCUPIED and UNOCCUPIED signal.

This filter smooths the signal of PD’s with a timeout of 5 minutes (figure 9.1). So we can reduce all this
signals to a few OCCUPIED signals. The filter sends only a OCCUPIED signal at each rising edge of its
state (e.g. two times in figure 9.1).

9.3 Toggle Filter

The current controlling algorithm of the AHA system isn’t perfected. On special conditions, blinds and lights
can switch their states within few seconds automatically. Such behavior adulterates the hebbian learning.

36

CHAPTER 9. FILTERING 9.3. TOGGLE FILTER

time [min]1 2 3 4 5 6 7 8 9 10 11 12

timeout of 5 min

off

on
off

on
filter state

pd state

Figure 9.1: The red line represent the state inside of the PD filter and the blue one the state of the PD itself.
Only events at the rising edge of inner state are passed by the filter.

This filter interprets two states which switches within 30 second as a toggle and blocks the second one (figure
9.2). The timeout is also re-triggered with each blocked event.

time [min]1 2 3 4 5 6

timeout

off

on
off

on

filter state

state of device

Figure 9.2: The red line represent the state of the filter and the blue one the state of the device itself. Only
the events at the rising or falling edge of the filter state are passed by the filter.

37

Chapter 10

Simulation

By using the structure discovery agent (SDA) in a multi-agent-system, it receives messages from the Distri-
butionAgent for each state update. For testing and analyzing our algorithm it is necessary to simulate this
changes of states in a shorter time, but still based on real data.

In our simulation we replace the SDA with the EventSimulator which reads a log file and simulates all
recorded events one by one, see figure 10.1. The current ABI system (to be exactly the Bus agent) maintains
this logfile by writing each event in it.

log file
EventSim. EventCol.

time,id,value
time,id,value
time,id,value
time,id,value
...

Figure 10.1: The EventSimulator parses the logfile and sends simulated events to the EventCollector.

10.1 Who records event data

The quality of a simulation is directly dependent on the underlying data. We record real data produced by
human and system behavior. We expanded the BusAgent of the existing ABI system with this feature. This
agent knows about all updates and can easy write a log file. The logfile consists of events where each carries
a timestamp, value and device ID.

10.2 Features

In some cases it is interesting to analyze just some specific rooms. Therefore we implemented a feature that
allows us to enable/disable each device. We can also define a start time for simulation. All events before
this startpoint get ignored.

38

Part V

Results and Discussion

39

Chapter 11

Results and Discussion

This chapter gives a detailed explanation of our results. After illustrating our algorithm, the architecture
and implementation we discuss here the gained structure information.

First we prove our assumption which is the basis for the whole hebbian learning by analyzing the time
dependencies in and between rooms. After we illustrate and discuss the results from the hebbian learning,
before we finally present our determined structure information.

11.1 How sparse is the data?

To give sparse data a more precise meaning the following tables show how many times a device has notified
a changed state. Each device is located in a room and has a unique LonWorks ID which is also listed in the
tables. We refer in this chapter several times to these devices, and use for this the Device ID.

Intelligent rooms:

Room Number Device Type Device ID LonWorks ID Fire Counter
55G74 light 1 1 242 424
55G74 light 2 2 243 304
55G74 blind 1 3 342 365
55G74 blind 2 4 312 367
55G74 presence 5 247 154
55G84 light 1 6 343 505
55G84 light 2 7 344 632
55G84 blind 1 8 327 378
55G84 blind 2 9 329 379
55G84 presence 10 348 176

Table 11.1: Firecounter of all devices in rooms controlled by AHA. Observation period: 06 may - 13 june
(38 days)

40

CHAPTER 11. RESULTS AND DISCUSSION 11.1. HOW SPARSE IS THE DATA?

Human controlled rooms:

Room Number Device Type Device ID LonWorks ID Fire Counter
55G86 light 1 11 266 77
55G86 light 2 12 267 73
55G86 blind 13 317 30
55G86 presence 14 271 118
55G80 light 1 15 258 293
55G80 light 2 16 259 11
55G80 blind 17 315 50
55G80 presence 18 263 113
55G78 light 1 19 250 39
55G78 light 2 20 251 38
55G78 blind 21 313 11
55G78 presence 22 255 180
55G26 light 1 23 180 20
55G26 light 2 24 181 181
55G26 blind 1 25 168 11
55G26 blind 2 26 170 33
55G26 presence 27 185 296
55G26 presence 28 189 195
55G75 light 1 29 60 56
55G75 light 2 30 61 14
55G75 light 3 31 76 134
55G75 light 4 32 77 7
55G75 blind 1 33 103 51
55G75 blind 2 34 105 40
55G75 presence 35 65 772
55G75 presence 36 67 803

Table 11.2: Firecounter of all devices in rooms controlled by people. Observation period: 06 may - 13 june
(38 days)

41

11.2. TIME DELAY CHAPTER 11. RESULTS AND DISCUSSION

11.2 Time delay

We show in chapter 4.1 that the temporal appearance of events is a criteria for the correlation. We assume
that devices inside of a physical room are predominantly used within short-time periods. E.g. often two lights
are turned on or off together. Such temporal compliances between different rooms are mostly randomly.

The analysis of frequency distribution about timedelays inside of physical rooms shows that the most
correlations occur in the first three seconds (figures 11.1 and 11.3).
In contrast of this the timedelay between physical rooms are distributed over the whole time (figure 11.5).
The peak at five seconds results from several unique device-device combinations. Whereas the peaks in
histogram 11.1 and 11.3 results from few high-frequent combinations (table 11.2, 11.4 and 11.6).

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
uncontrolled room 86

pr
ob

ab
ili

ty

delaytime [sec]

Figure 11.1: Distribution of timedelay of all event correlations inside room 86

type-type ID-ID counter percent
light1-light2 266-267 64 74.4%

light1-pd1 266-271 12 14.0%
light2-pd1 267-271 8 9.3%

light1-blind1 266-317 1 1.4%
light2-blind1 267-317 1 1.4%

Figure 11.2: Number of timedelays (less than 5000ms) for device-device combinations inside room 86

Inside AHA controlled rooms there are more event sequences within a small delaytime (figure 11.7 (a)).
Between the rooms the timedelay is arranged like an equal distribution (figure 11.7 (b)). This must be a
consequence of the learning rules which are restricted to the physical room boundaries.

We prove our assumption by considering rooms in our test environment. But it is possible that there exists
situations where our assumption fails, e.g. when a user never uses the blinds because the sun is never shining
into his window. If that is true we could never detect any (short) event sequences with his blind.

42

CHAPTER 11. RESULTS AND DISCUSSION 11.2. TIME DELAY

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
uncontrolled room 75

pr
ob

ab
ili

ty

delaytime [sec]

Figure 11.3: Distribution of timedelay of all event correlations inside room 75

type-type ID-ID counter percent
pd1-pd2 65-67 174 57.6%

blind1-blind2 103-105 37 12.6%
pd1-light3 65-76 26 8.6%

light1-light3 60-76 21 7.0%
light1-pd1 60-65 11 3.6%
pd2-light3 67-76 9 3.0%
light1-pd2 60-67 5 1.7%

light1-light2 60-61 4 1.3%
light2-light4 61-77 2 0.7%
light2-light3 61-76 2 0.7%

light2-pd2 61-67 1 0.3%
light3-light4 76-77 1 0.3%
light1-light4 60-77 1 0.3%
light4-blind1 77-103 1 0.3%
light3-blind1 76-103 1 0.3%
light2-blind1 61-103 1 0.3%
light1-blind1 60-103 1 0.3%
light4-blind1 77-105 1 0.3%
light3-blind1 76-105 1 0.3%
light2-blind1 61-105 1 0.3%
light1-blind1 60-105 1 0.3%

Figure 11.4: Number of timedelays (less than 5000ms) for device-device combinations inside room 75

43

11.2. TIME DELAY CHAPTER 11. RESULTS AND DISCUSSION

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
between uncontrolled room 86 and room 75

pr
ob

ab
ili

ty

delaytime [sec]

Figure 11.5: Distribution of timedelay of all event correlations between room 86 and 75

type-type ID-ID counter percent
blind2 75-light2 86 105-267 2 10.0%
light1 75-blind1 86 60-317 1 5.0%
light1 75-light1 86 60-266 1 5.0%
light1 75-light2 86 60-267 1 5.0%
light2 75-blind1 86 61-317 1 5.0%
light2 75-light1 86 61-266 1 5.0%
light2 75-light2 86 61-267 1 5.0%
light3 75-blind1 86 76-317 1 5.0%
light3 75-light1 86 76-266 1 5.0%
light3 75-light2 86 76-267 1 5.0%

light3 75-pd 86 76-271 1 5.0%
light4 75-blind1 86 77-317 1 5.0%
light4 75-light1 86 77-266 1 5.0%
light4 75-light2 86 77-267 1 5.0%

blind1 75-blind1 86 103-317 1 5.0%
blind1 75-light2 86 103-267 1 5.0%
blind2 75-blind1 86 105-317 1 5.0%

pd2 75-pd1 86 67-271 1 5.0%
pd2 75-light2 86 67-267 1 5.0%

Figure 11.6: Number of timedelays (less than 5000ms) for device-device combinations between room 86 and
75

44

CHAPTER 11. RESULTS AND DISCUSSION 11.2. TIME DELAY

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Histogram of timedelay for controlled room 84

pr
ob

ab
ili

ty

delaytime [sec]

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

pr
ob

ab
ili

ty

delaytime [sec]

Histogram of timedelay between controlled room 74 and room 84

Figure 11.7: Distribution of timedelay of inside and between controlled rooms.

45

11.3. HEBBIAN LEARNING CHAPTER 11. RESULTS AND DISCUSSION

11.3 Hebbian learning

In this section we give a detailed explanation of several different reward functions and survey them. We also
review our algorithm to determine the relationships by analysing trends of several device-device combinations
and discuss open issues.

11.3.1 What’s a good approximation for a reward function?

As we showed in the theory part, most information lies in the time between firing of different devices. The
analysis has shown that the likelihood that two devices are somehow structurally dependent on each other
is much higher if the time delta between two firing nodes is small.

Based on this analysis we wanted to potentiate a connection with a maximum reward points, if the time
delta is small enough. The value of reward should depend on the time delay between them. We defined four
different reward functions (11.1,11.2,11.3,11.4) which cover different areas (see also plot 11.8).

The reward function is only defined in a fixed learning window = 300′000ms, sequences which have a larger
∆t are not rewarded. Long term behavoir should be learnt by an other instance, like for example the control
agent of the ABI [?].

To exclude any system delay we have defined a gap = 1000ms during which all connections get the maximum
reward (maxreward = 1.0). The binary reward function only rewards connections which have a ∆t equal
or smaller than gap. All others reward in the whole window.

rlinear(∆t) =
(window−∆t) ·maxreward

window
(11.1)

rnegexp(∆t) =

{
maxreward if ∆t <= gap
maxreward

e
(∆t−gap
5000ms

if ∆t > gap (11.2)

rreciproc(∆t) =

{
maxreward if ∆t <= gap
maxreward

∆t
1000ms

if ∆t > gap
(11.3)

rbinary(∆t) =
{

maxreward if ∆t <= gap
0.0 if ∆t > gap

(11.4)

Figures in 11.9 shows the mean value of each connection over an observation period of 38 days (12may -
13june) and figure 11.10 shows their variance. Figure 11.9b clearly points out devices which have a high
correlation and always change its states together. These are for example blind pairs, light pairs, presence and
some other devices combinations. They can good be detected in intelligent rooms. But human-controlled
rooms often do not have such short term sequences, that’s the reason because the bottom right corner has
not so intensive colors.

In contrast, figure 11.9a shows a very noisy image diagram. Sequences which have a high ∆t are still rewarded
and produce such noisy areas. Even if human-controlled rooms have much more sparse data they become
more noisy because there are more sequences between rooms with a large learning window.

The negative exponential and reciprocal reward function 11.9c,d point out a much better image diagram.
They still have some noisy values, but less than the linear rewarded one. They try to find connections
between devices inside rooms, which typically have a small ∆t, but rewards also sequences between different
rooms if they occur often. We think these functions fits best as a reward function. Also other neuroscience
projects are dealing with a negative exponential reward function, like we have mentioned in the theory
chapter 4.1 on page 12.

46

CHAPTER 11. RESULTS AND DISCUSSION 11.3. HEBBIAN LEARNING

0 0.5 1 1.5 2 2.5 3

x 104

0

0.2

0.4

0.6

0.8

1

reward functions

time [ms]

re
w

ar
d

va
lu

e
linear
neg. exponential (decrease 5s)
reciprocal (decrease 1s)
binary

Figure 11.8: Four different reward functions (linear, neg. exponential, reciprocal, binary)

Figure 11.10 describes the variance of the mean 11.9 and shows that that the system is really dynamic. The
mean values is taken over an observaton period of 38days. The variance is just between devices in the same
room higher than zero. Other combinations are almost zero, which means that devices from different rooms
do not influence eachother by looking at them over a longer period.

11.3.2 Decay

As mentioned above, it is a known problem that there is no bound on weight of the connections in hebbian
learning. We solve this with a decay function which decreases a connection between two nodes if just one
fires in an observed time window. This decreas depends on the current value of the connection. This means
a connection with the maximum reward decreases more than a connection which was only once discovered.
An example is shown in plot 11.11, where the reward value is 1.0. This value can result of a sequence which
was rewarded with the maximum or with several rewards of different sequences. The plot illustrates now,
how much the total reward weight between two devices decreases, if just one device fires within the learning
window. It takes approximately 100 firings of one device, until the weight reaches zero. This would mean,
that the devices are not dependent anymore or the learnt sequence was just a random one.

The drawback of this decay function is that knowledge gets lost, which was learned in the past. But on the
other hand it is maybe not essential to keep as much as possible in memory. We think a building is not
static as it is built, rather it behaves dynamic and adapts to the needs of its inhabitant and the current
weather conditions outside. For this reason we think a decay function is justifiable which decreases sequence
patterns from the past if they do not occur anymore.

Another issue is the integration of new devices. If there is no decay, it would take a long time until this
device can build up rewards to other devices. With the decay we bound the reward indirect to a range and
make sure that a new device can be integrated quite fast.

47

11.3. HEBBIAN LEARNING CHAPTER 11. RESULTS AND DISCUSSION

linear

10 20 30

5

10

15

20

25

30

35
0

5

10

15

binary

10 20 30

5

10

15

20

25

30

35
0

5

10

15

reciproc

10 20 30

5

10

15

20

25

30

35
0

5

10

15

exponential

10 20 30

5

10

15

20

25

30

35
0

5

10

15

correlation mean

A)

C) D)

B)

Figure 11.9: Correlation mean between each device pair gained by different reward functions: A) linear,
B) binary, C) reciprocal and D) negative exponential. D presents only high correlated devices, whereas B is
much noisier. All images have seven different rooms on thier diagonal, and the devices are willful ordered
for a better understanding. Both axes reprents 36 devices, to understand the id consult table 11.2 and 11.1
on page 41 for the Device ID translation. gap=1s, learning window=30s, decay=.95

48

CHAPTER 11. RESULTS AND DISCUSSION 11.3. HEBBIAN LEARNING

linear

10 20 30

5

10

15

20

25

30

35
0

2

4

6

8

10

12

binary

10 20 30

5

10

15

20

25

30

35
0

2

4

6

8

10

12

reciproc

10 20 30

5

10

15

20

25

30

35
0

2

4

6

8

10

12

exponential

10 20 30

5

10

15

20

25

30

35
0

2

4

6

8

10

12

correlation variance

A)

C) D)

B)

Figure 11.10: Correlation variance of the four different reward functions (A) linear, B) binary, C) reciprocal
and D) neg. exponential), both axes represents also devices with thier id (see figure 11.9), gap=1s, learning
window=30s, decay=.95

49

11.3. HEBBIAN LEARNING CHAPTER 11. RESULTS AND DISCUSSION

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

decay function by one maximum reward

number of times node fires alone

re
w

ar
d

Figure 11.11: decay (95%) function: if a connection has a total reward value of 1.0, it takes approximately
100 firings where just one of the two devices is active until the weight decreases to zero.

11.3.3 Trend of connections over time

Because an intelligent room (which is controlled by AHA) has at the moment much more events than a
normal human-controlled room, it is nessecary to analyse them separatly. Table 11.2 and 11.1 on page 41
shows how many times each device has fired.

The following figures show the trend of each connection between two node. Figure 11.12 shows the trends in
human-controlled rooms and figure 11.13 shows the mean value over the last 38 days in an image diagram.
In the image diagrams columns and rows are willful arranged that devices from the same room are neighbors
because then all rooms are represented with rectangles around the diagonal. An optimal result would have
along the diagonal some rectangles, which would represent the individual rooms.

Figure 11.14 and 11.15 shows the same, but this time also with the intelligent rooms. These two intellient
rooms (room 74 and 84) have together 10 devices which are in the image 11.15 on the top left corner. It is
evident that they have a much better mean correlation, because they have much more state updates.

Figure 11.14 shows also two connections which are very high, almost at the limit value. These are two blind
pairs from room 55G74 and 55G84, which are always controlled together and changed quite often. This is
the reason why they have such a high connection value.

All other connections are lower than 10, and most are even near zero, which is good visible in both images
diagrams. And they show also, that all higher values are located around the diagonale, which means that
they have a connections to a device inside its own physical room. Devices are almost independent between
rooms, which is indicated with the dark blue color.

Problem: Presence Detectors

The last two image diagrams show clearly that the correlation between a presence detector and other devices
in its room is not very high. We expect a much better value, but with the current sensors its very difficult
to gain a real presence signal. First, they send a UNOCCUPIED event also if still someone is present, but
is working more or less motionless and secondly they have a software bug. This leads to a constant toggle

50

CHAPTER 11. RESULTS AND DISCUSSION 11.3. HEBBIAN LEARNING

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8

9

10

human controlled rooms 86 78 80 26 75 (12may−13june)
gap=1s window=30s maxr=1.0 decay=.95

re
w

ar
d

va
lu

e

time [h]

Figure 11.12: Human-controlled rooms (86 80 78 26 75), 12 May - 13 June 2003, gap=1000ms, neg. exp.
reward func

device id [to]

de
vi

ce
 id

 [f
ro

m
]

human controlled rooms 86 78 80 26 75 (12may−13june)
gap=1s window=30s maxr=1.0 decay=.95

5 10 15 20 25

5

10

15

20

25

0

1

2

3

4

5

6

7

Figure 11.13: Human-controlled rooms (86 80 78 26 75), 12 May - 13 June 2003, gap=1000ms, neg. exp.
reward func; Consult table 11.2 on page 41 for the Device ID translation (substract the id by 10).

51

11.3. HEBBIAN LEARNING CHAPTER 11. RESULTS AND DISCUSSION

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

intelligent/human controlled rooms 74 84 86 78 80 26 75 (12may−13june)
gap=1s window=30s maxr=1.0 decay=.95

re
w

ar
d

va
lu

e

time [h]

Figure 11.14: Intelligent- and human-controlled rooms (74 84 86 80 78 26 75), 12 May - 13 June 2003,
gap=1000ms, neg. exp. reward func

device id [to]

de
vi

ce
 id

 [f
ro

m
]

intelligent/human controlled rooms 74 84 86 78 80 26 75 (12may−13june)
gap=1s window=30s maxr=1.0 decay=.95

5 10 15 20 25 30 35

5

10

15

20

25

30

35
0

2

4

6

8

10

12

14

16

18

Figure 11.15: Intelligent- and human-controlled rooms (74 84 86 80 78 26 75), 12 May - 13 June 2003,
gap=1000ms, neg. exp. reward func; Consult table 11.2 and 11.1 on page 41 for the Device ID translation.

52

CHAPTER 11. RESULTS AND DISCUSSION 11.3. HEBBIAN LEARNING

stream with a period of ca. 90s.

And at last an intelligent room sets off all lights if nobody is present. A human-controlled room does not
act similar (also because of the sw bug). These three points are almost impossible to kept in our filter. If
the building system would run properly we expect better correlation between presence detector and other
devices. Every morning when a person enters, he changes typically the state of the room (switch lights on,
rise blinds, etc.) and even these sequences are difficult to obtain.

Blind pairs

We expect devices which are ”hard-wired” by the Lonworks Software have a high correlation. Room 74 and
84 have blind pairs and each is controlled with one wall-switch. Figure 11.16 presents that this assumption
is right. But it also shows a problem of the temporal order of events. Blind 1 and blind 2 in room 74 are
controlled together and our system receives mostly first an event from blind 1 and immediately an event
from the other blind. This sequence strengthens the connection between blind 1 and 2 but not contrary.
However there are also other sequences where the system receives first an update from the second blind and
then strengthens the connection in the other direction.

This was also a reason why we thought about a gap in the reward function. But to solve this problem for
example the reward should be given to both directed connection. Because we transform this graph in a
undirected before we partition it, this was not yet nessecary.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

correlation between blinds in room 74 84 86 (12may−13june)
gap=1s window=30s maxr=1.0 decay=.95

re
w

ar
d

va
lu

e

time [h]

blind1 74 −> blind2 74
blind2 74 −> blind1 74
blind2 84 −> blind1 84
blind1 84 −> blind2 84

Figure 11.16: Blind pairs in rooms 74 84, 12 May - 13 June 2003, gap=1000ms, neg. exp. reward func.
312/342 are blinds from room 74, 327/329 from room 84.

11.3.4 Discussion

As illustrated in the last sections, we can determine the functional relationship between devices. But we also
mentioned some problems, where a structure discovery can be difficult. Maybe there are also users, which
behaves totally different as our assumption, and work in a environment without tough any effectors. This

53

11.3. HEBBIAN LEARNING CHAPTER 11. RESULTS AND DISCUSSION

makes it almost impossible to gain any reliable structure information, but do we need knowledge of these
devices if they do not change over more than for example 4 days? Is it possible to control them in a further
step? These are questions which have to be answered in future.

But even if we look at the mean correlation between devices in a controlled environment. Room 74, 84 and
86 have quite active devices and figure 11.17 shows this also clearly with three rectangles. The 5x5 area on
the top-left corner are the five devices from room 74, in the center is also a 5x5 area with the devices from
room 84 and on the bottom-left corner the 4x4 area which represents room 86. Translation of the devices
ids are defined in the tables on 41. Another interesting point which this figures illustrates is the influence of
presence detectors to the other devices. Row 5, 10 and 14 represent these relationships.

device id [to]

de
vi

ce
 id

 [f
ro

m
]

rooms 74 84 86 (12may−13june)
gap=1s window=30s maxr=1.0 decay=.95

2 4 6 8 10 12 14

2

4

6

8

10

12

14

2

4

6

8

10

12

14

16

Figure 11.17: A closer look to the correlation mean in 74 84 86, 12 May - 13 June 2003, gap=1000ms, nexp.
reward func.

We also think that the reward and decay function can be improved. If we would have more data, we think
a better approximation of the reward function could be possible. A negative exponential function seams to
deliver good results, but maybe the stretch factor should be resized.

Figure 11.18 illustrates our algorithm in a nice way. The lights in room 86 are switched on/off mostly
together. But not always in the same order, which results that one relationship decreases and the other
increases. But there are also situations where just one is switched on because the sum is below 20.

54

CHAPTER 11. RESULTS AND DISCUSSION 11.3. HEBBIAN LEARNING

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

correlation between lights in room 86 (12may−13june)
gap=1s window=30s maxr=1.0 decay=.95

re
w

ar
d

va
lu

e

time [h]

light2 86 −> light1 86
light1 86 −> light2 86

Figure 11.18: A nice illustration of our algorithm for example by considering the lights in room 86.

55

11.4. CLUSTERING CHAPTER 11. RESULTS AND DISCUSSION

11.4 Clustering

11.4.1 Threshold

The normalized cut algorithm divides a set of devices into two subsets. This can be done recursively until
each device is in its own set. Thus we have to define a threshold to stop any further partitioning. To
determine this threshold we measured all second smallest eigenvalues while subpartitioning.
Figure 11.19 shows the histogram of this eigenvalues in AHA controlled rooms. It illustrates that there are
many small eigenvalues between 0.0 and 0.2 and almost none between 0.2 and 0.4. Afterwards there are
again more eigenvalues. Based on this result we interpret that the lowest eigenvalues separate all physical
rooms in there own clusters and the much higher eigenvalues divide the rooms into subclusters. Human

0 0.25 0.5 0.75 1 1.25 1.5
0

50

100

150

200

250

300

350

400

450
histogram about eigenvalues in system controlled rooms

value of second smallest eigenvalue

co
un

t o
f c

ho
os

en
 th

re
sh

ol
ds

Figure 11.19: Histogram of all second smallest eigenvalue. These are gained by partition a graph recursively
with devices from AHA controlled rooms.

controlled rooms are not as active as controlled rooms. Thus the association between the rooms are higher
and the cohesion inside rooms lower. Figure 11.20 shows that there is not such a good threshold to determine
like in controlled rooms. Inspired by figure 11.19 we defined threshold=0.6 and achieved good results. But
we know that this threshold can vary from optimal one.

11.4.2 Eigenvalue and eigenvector

The normalized cut approximates the NP-complete problem to a generalized eigenvalue problem. The
eigenvector of the second smallest eigenvalue delivers the partitioning solution. Each device is represented
in this eigenvector as an element. In a discrete solution the elements of this eigenvector are 1.0 or -1.0. All
devices with an element value of -1.0 are divided into a set A, all with +1.0 into set B.
But the calculated eigenvector is a continuous approximation. In most cases the allocation to a discrete
solutions is distinct (figure 11.21). Whereas in figure 11.22 some devices are located around zero. At first
glance it seems that devices six to nine build a third cluster but they have a light relationship among
themselves. It seams that devices which are located near zero are not strongly related among themselves.
Also it is not bad to allocate this group of devices to two other subsets. But this observation should constitute
in further analysis.

56

CHAPTER 11. RESULTS AND DISCUSSION 11.4. CLUSTERING

0 0.25 0.5 0.75 1 1.25 1.5
0

50

100

150

200

250

300

350

400

450

500
histogram about eigenvalues in human controlled rooms

value of second smallest eigenvalue

co
un

t o
f c

ho
os

en
 th

re
sh

ol
d

Figure 11.20: Histogram of all second smallest eigenvalue. These are gained by partition a graph recursively
with devices from human controlled rooms.

0 2 4 6 8 10 12 14
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
second smallest eigenvector (first cut)

index in eigenvector (represent device number)

Figure 11.21: Cut by zero divide devices (x axis) in two groups

57

11.4. CLUSTERING CHAPTER 11. RESULTS AND DISCUSSION

0 2 4 6 8 10 12 14
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
second smallest eigenvector (first cut)

index in eigenvector (represent device number)

Figure 11.22: Few devices are arranged near zero. The zero cut splits this devices to the two clusters.

11.4.3 Quality of clustering

To measure the quality of the computed structure, we have to compare this with a predefined model. A
thinkable model is the physical structure, which is also the most evident one. But there are also other logical
models like for example a structure which clusters all blind on the east side of the building.
Although the normalized cut algorithm builds a hierarchical cluster tree (binary tree) we do not consider
this information for analysing up to now (for reasons see chapter 5.3).

To compare the determined structure with the physical model we allocate each cluster to the most corre-
sponding a room. We do this by analysing the number of devices in a cluster which belongs to the different
rooms. A cluster gets allocated to the physical room with the highest number (figure 11.23). This assignment
is the basis for our further analysis.

74

Presence

Light

Blinds

LonWorks

Key

78

Figure 11.23: This cluster, indicated by the red line, belongs with 60% to the room 74 and with 40% to
room 78. As described we regard this cluster as one which belongs to room 74.

Correctness of devices

Table 11.3 shows the correct allocations (in percent) for each device. Correct means that the device is in a
cluster which is allocated to the correct physical room of this device. For example in figure 11.23 the device
light1 in room 74 is correct allocated because the cluster also belongs more to physical room 74 than room

58

CHAPTER 11. RESULTS AND DISCUSSION 11.4. CLUSTERING

84.

Room Description Devices Type LonWorks ID Correct Allocation (%)
Room 75 light1 60 100

light2 61 91
light3 76 100
light4 77 92
blind1 103 100
blind2 105 100
pd1 65 99
pd2 67 80

Room 78 light1 250 100
light2 251 100
blind1 313 55
pd1 255 65

Room 80 light1 258 100
light2 259 100
blind1 315 6
pd1 263 84

Room 86 light1 266 100
light2 267 100
blind1 317 100
pd1 271 100

Room 26 light1 180 93
light2 181 60
blind1 168 9
blind2 170 7
pd1 185 74
pd2 189 100

Table 11.3: correctness of devices (only human controlled rooms)

Table 11.3 shows that almost all devices are allocated to the right room. But some devices (mostly blinds)
are often allocated to other rooms (blind1-78, pd1-78, blind1-80, light2-26, blind1-26, blind2-26). Whereby
the device light4-75 fires only seven times during 38 days.

Device Type Fire Counter Room26 Room75 Room78 Room80 Room86
blind1-80 50 8.7% 28.7% 55.2% 5.7% 1.6%
blind1-26 11 8.8% 91.2% 0.0% 0.0% 0.0%
blind2-26 33 7.3% 37.0% 0.0% 0.0% 55.7%

Table 11.4: List of allocation of perverse devices

Table 11.4 shows for these devices how strong they are allocated to other rooms. We see that the blind1-80
is allocated most of the time with devices from the room 78 and 75. If we look into the reward graph we
can detect the relevat device-device combinations for this behavior (figure 11.24). While the first 180 hours
it looks correct, the highest reward are inside of the room 80. But this timepoint the blind1 in room 78
gets the maximum of reward by mischance. Also the blind1-75 triggers at the timepoint 250 hours a reward.
Although this rewards decrease with every event from the blind1-80, they are higher than inside correlations
for a longer time. Therefore the blind1-80 seems to be more releated to the blind1-78 and blind1-75 for the
remaining time although this rewards are accidentally.

An interesting aspect is that devices with the three lowest allocations are blinds. It looks that our reward
function does not reward correlations for blinds good enough. But we are positiv that our reward function
can detect relationships between the correct presence detector as soon as the software bug of presence de-
tectors is fixed.

59

11.4. CLUSTERING CHAPTER 11. RESULTS AND DISCUSSION

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rewards of device blind1−80 to all others in rooms 78, 75 and 80

time [h]

re
w

ar
d

light1−80 to blind1−80
pd1−80 to blind1−80
blind1−80 to blind1−78
blind1−75 to blind1−80

Figure 11.24: All reward weights of devices in rooms 78,86 and 80 from and to device 315 which are greater
than zero.

Quality / clarity of clusters

A cluster should be allocated to the corresponding right physical room as well as only containing devices
from the same room. For instance a cluster with five devices have a quality of 4/5 (80%) if four devices are
from the allocated physical room. Table 11.5 shows the quality of clusters for each physical room.

Room Number Clarity of Allocated Clusters (%)
86 89%
78 77%
80 75%
26 93%
75 83%

Table 11.5: quality of builded clusters (only human controlled rooms)

Also we see that the recognized clusters contains almost only devices from one physical room. More than 50
percent of clusters includes only devices from the same physical room (11.25).

Medium number of clusters for physical rooms.

And now we want the answer in how many clusters gets a room divided. This is one of the most interesting
aspects of the clustering results. Table 11.6 illustrates the medium number of clusters. These values mean
for each room bases also on the allocation of clusters to a physical room (described in the introduction of
11.4.3).

Most small rooms are divided into one or temporary more clusters. The big office (room 75) is splitted into
nearly three subclusters. Histogram 11.26 shows the probability of different cluster sizes. Clusters which

60

CHAPTER 11. RESULTS AND DISCUSSION 11.4. CLUSTERING

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Histogram of cluster quality (all rooms)

quality [%]

pr
ob

ab
ili

ty

room 86
room 78
room 80
room 26
room 75

Figure 11.25: Distribution of cluster quality for each room.

Room Description Medium number of cluster
for physical room

Room 86 1.0
Room 78 1.53
Room 80 1.36
Room 26 1.20
Room 75 2.87

Table 11.6: Medium cluster size grouped by rooms

61

11.4. CLUSTERING CHAPTER 11. RESULTS AND DISCUSSION

includes only two devices contain mostly light or blind pairs. It also illustrates that clusters mainly include
less than four devices.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Histogram of cluster size

cluster size

fre
qu

en
cy

 [%
]

Figure 11.26: Distribution of cluster size of all built clusters.

62

Part VI

Conclusion and Future Work

63

Chapter 12

Conclusion

We proved that it is eventually possible to determine a very detailed functional structure from the data
available to the system. The result chapter demonstrates that our approach discovers a functional structure
from very sparse data which matches almost perfectly with the physical model.

Small rooms equipped with about four devices are determined as being independent, even if they contain
devices which have just one update every fourt day on average. But we have seen also, that our assumption
can not be valid in general within a small timeframe of 40 days. There are some devices which are rarely
active and do not strengthen their relationship with others because of this. Additionally there are still
presence detectors which do not operate correctly and because of this we have to filter incoming events.
Filtering is not lossless and we thus also lose some data due to this. If the presence detectors would run
properly, especially rarely active blinds could potentially strengthen their relation to a presence detector and
would be grouped into the correct cluster.

Bigger rooms within which more people are working are divided into subrooms. But up to now we can not
prove this in general, because we only have real data from one such room. And also to gain there better
results we think they have to be equipped with more sensors (especially the presence detectors have to be
more sensitive).

Nevertheless our approach is capable to discover the functional structure in a pretty robust way. And this
even in an environment with real data of a real building equipped with a variety of sensors and effectors,
which can be damaged or behave weired.

Another advantage of our approach is that it is able to compute the realtionship between devices locally and
thus in parallel. The partitioning can be triggered event-driven.

64

Chapter 13

Future work

Here we deal with possible extentions of our approach and also possible future directions for research about
intelligent buildings in general.

13.1 Include event values and analog devices

As this document illustrated, we consider up to now just devices which have a digital output value. We do
not analyze the value of their update while their are sending an event over the fieldbus. It could be possible
to gain a more detailed reward graph, if we would also regard the actual value of the events. But we think
this would make the graph larger and even more complicated for partitioning.

A more reasonable issue is to include first the analog devices in our discovery of structure. But, unlike the
digital one, they are sending much more events because e.g. the illumination changes on average slowly but
continuously. This analog value should be quantified somehow, for example by decreasing a new reward with
the delta of its notified state value: r = r ∗∆s where ∆s = si+1 − si is the delta between the new and old
state value.

13.2 Different reward functions

We could prove our assumption in most cases, but there are a few devices which possibly never strengthen
their relationship with others. It is thinkable to have more than one reward function. One could for example
just strengthen sequences where two devices are active together at the same time, and another could reward
sequences which have a bigger ∆t. The first one would obviously strengthen the weights with a higher reward
than the second can ever do.

13.3 Deploy dynamic structure information to multi-agent-system

Beside to get a better understanding about the dynamic structure of our intelligent building, it is also the
objective to deploy this knowledge to the learning units. They should use this information to control just
this cluster which they are associated with. And if there is a new device inside of its cluster, it should learn
how this one can be involved in the rulebase and eventually also controlled.

If a device belongs no longer to a specific cluster, the learning unit should notice this and break off to control
it.

65

13.4. POLICY TRANSFER CHAPTER 13. FUTURE WORK

13.4 Policy transfer

If structure adapts to a new state, especially the control agents have to be informed or have to request the
new structure. If a device belongs no longer to a specific cluster it is assigned to another or was removed
from the dedicated fieldbus. When the device is now just in another cluster, two agents have to notice this.
The one which has lost the device, and the other which has gained it. To be able to control this new device,
the second agent has to collaborate with the first one. They exchange their learned knowledge about one or
a set of devices. But how this challenge can be solve is still an open issue.

66

Part VII

Glossary and Bibliography

67

Bibliography

[ABL] Agent building and learning environment (able). http://www.alphaworks.ibm.com/tech/able.

[BDY99] Magnus Boman, Paul Davidsson, and H̊akan L. Younes. Artificial decision making under un-
certainty in intelligent buildings. In Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 65–70, 1999. ftp://ftp.dsv.su.se/users/mab/uai99.ps.

[Bol96] J. Bollen. Algorithms for the self-organisation of distributed, multi-user networks, 1996.

[Bro91] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.

[BSP+02] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao. Able: A toolkit
for building multiagent autonomic systems. IBM Systems Journal, Applications of Artificial
Intelligence, Vol 41(Nr.3):350–371, 2002.

[Col] Open source libraries for high performance scientific and technical computing in java.
http://hoschek.home.cern.ch/hoschek/colt.

[EIB] European installation bus. http://www.eiba.com.

[EKB+03] K Eng, D Klein, A Baebler, U Bernadet, M Blanchard, M Costa, T Delbruck, R J Dou-
glas, K Hepp, J Manzolli, M Mintz, F Roth, U Rutishauser, K Wassermann, A M Whatley,
A Wittmann, R Wyss, and P F M J. Verschure. Design for a brain revisited: The neuromorphic
design and functionality of the interactive space ada. Reviews in the Neurosciences, 2003.

[FIP02] Fipa abstract architecture specification (xc00001k). Technical report, Foundation For Intelligent
Physical Agents, Geneva, Switzerland, 2002.

[FLoA02] Inc. Fujitsu Laboratories of America. Jas agent services (jsr-87) specification. http://www.java-
agent.org, 2002.

[GK] Wulfram Gerstner and Werner M. Kistler. Mathematical formulations of hebbian learning.

[GK02] Wulfram Gerstner and Werner M. Kistler, editors. Spiking Neuron Models – Single Neurons,
Populations, Plasticity. Cambridge University Press, August 2002. ISBN : 0-521-81384-0.

[Heb49] Donald Hebb, editor. The Organization of Behavior. Wiley, New York, 1949.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys,
31(3):264–323, 1999.

[L4J] Log4j logging framework. http://jakarta.apache.org/ant.

[LON] Lonworks networking platform. http://www.echelon.com/products.

[MvRT00] G.Q. Bi M.C.W. van Rossum and G.G. Turrigiano. Stable hebbian learning from spike timing-
dependent plasticity. The Journal of Neuroscience, Vol 20(8812-8821):8812–8821, 2000.

[RS02a] Ueli Rutishauser and Alain Schaefer. Adaptive building intelligence – a multi-agent approach.
Technical report, University of Applied Sciences Rapperswil, Switzerland and Institute of Neu-
roinformatics, Swiss Federal Institute of Technology, Zurich, Switzerland, 2002.

68

http://www.alphaworks.ibm.com/tech/able
ftp://ftp.dsv.su.se/users/mab/uai99.ps
http://hoschek.home.cern.ch/hoschek/colt
http://www.eiba.com
http://jakarta.apache.org/ant
http://www.echelon.com/products

BIBLIOGRAPHY BIBLIOGRAPHY

[RS02b] Ueli Rutishauser and Alain Schaefer. Adaptive home automation – a multi-agent approach.
Technical report, University of Applied Sciences Rapperswil, Switzerland and Institute of Neu-
roinformatics, Swiss Federal Institute of Technology, Zurich, Switzerland, 2002.

[SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[SMA00] S. Song, K. Miller, and L. Abbott. Competitive hebbian learning through spiketime-dependent
synaptic plasticity. Nature Neuroscience, 3:919–926, 2000.

[VC00] Graham Clarke Victor Callaghan. A soft-computing dai architecture for intelligent build-
ings. Technical report, Department of Computer Science, University of Essex and Depart-
ment of Computer Science, University of Hull, 2000. http://cswww.essex.ac.uk/intelligent-
buildings/publications/springerverlag.pdf.

[Wei99] Gerhard Weiss, editor. MULTIAGENT SYSTEMS, A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, Massachusetts, 1999. ISBN : 0-262-23203-0.

69

http://cswww.essex.ac.uk/intelligent-buildings/publications/springerverlag.pdf
http://cswww.essex.ac.uk/intelligent-buildings/publications/springerverlag.pdf

	Preface
	I Introduction
	Introduction
	Overview
	Adaptive Building Intelligence (ABI)
	Content
	Related work

	Motivation

	II Approach to the problem of structure
	Determine functional relationship between devices and partition them into clusters
	Overview
	Determine similartiy between devices
	Correlation coefficient
	Temporal dependent activity
	Genetic algorithm

	Clustering / partitioning
	Minimal spanning tree
	K-means clustering
	Normalized cut

	Which one fits best?
	Measure similarity
	Clustering / partitioning

	Theory
	Hebbian Learning
	Temporal aspects
	Adaption to a multisensor environment

	Normalized cut algorithm
	Computation
	Algorithm
	Transfer to clustering our hebbian learned connection graph

	Our approach to the problem of structure
	Determine functional relationship
	Transform directed reward graph into undirected

	Partition graph into subgraphs
	Track structure of clusters

	III Architecture
	System Architecture
	Basic principles

	Software Architecture
	Overview ABI System / Standards
	Agents and their interaction
	Control agent
	Structure agent
	Structure discovery agent
	Bus agent
	PC agent
	Distribution agent
	Virtual person agent

	IV Design and Implementation
	Structure Discovery Agent
	Functionality
	Messages in AHA
	Implementation
	Design
	Data flow
	Visualisation

	Used frameworks

	Filtering
	Similar Event Filter
	Presence Detector
	Toggle Filter

	Simulation
	Who records event data
	Features

	V Results and Discussion
	Results and Discussion
	How sparse is the data?
	Time delay
	Hebbian learning
	What's a good approximation for a reward function?
	Decay
	Trend of connections over time
	Discussion

	Clustering
	Threshold
	Eigenvalue and eigenvector
	Quality of clustering

	VI Conclusion and Future Work
	Conclusion
	Future work
	Include event values and analog devices
	Different reward functions
	Deploy dynamic structure information to multi-agent-system
	Policy transfer

	VII Glossary and Bibliography

