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Abstract

Contemporary approaches to the architecture of living and working environments emphasize the simple
reconfiguration of space to meet the needs, comfort and preferences of its inhabitants and to minimize the
consumption of resources such as power. The configuration can be explicitly specified by a human build-
ing manager, but there is now increasing interest in the development of intelligent buildings equipped with
standard sensors (e.g. presence, temperature, illumination, humidity) and effectors (e.g. lights, window
blinds, wall-switches) that adapt to the needs of its inhabitants without human intervention. Occupants of
a building can move, come or leave within short time and therefore also their individual desires. We regard
inhabitants of a building as part of the structure in which they are working or living. The structure itself is a
non-stationary environment where not only individual desires are constantly changing but also the physical
structure (e.g. mobile walls in multi-office environments, integration or dismounting of devices).

We present in this paper an approach that is able to learn from non-explicit feedback and control a building
with a collection of small controllers that act in sub-parts of the structure. A specifically designed controlling
and learning architecture takes decisions in parallel based on a short- and long-term memory. A temporary
controller implements a one-shot learning algorithm that learns online and unsupervised from temporary
behaviors of the building’s users. A long-term memory is managed by a memory-based controller that uses
an evolutionary algorithm to learn an optimal set of fuzzy logic rules. The genetic encoded fuzzy rulebase
is evolved and learnt with an iterative rule learning approach in collaboration with a fuzzy-variant adaptive
boosting algorithm.

Furthermore, we introduce a novel multi-agent approach which is able to administer a dynamic structure
where instances (e.g. devices, occupants) can change their location. Other services are providing an asyn-
chronous interest-based messaging between different agents or preventing data losses with a reliable recovery
system. Our approach is able to handle different types of multi-sensor environments simultaneously.

Further documentation, the API reference documentation and the sourcecode can be found at:
http://www.trjo.ch/projects/abi/.
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Chapter 1

Introduction

1.1 Overview

Current research is concerning about the integration of autonomous intelligence into our everyday life. Many
attempts are trying to interact, improve user comfort and provide security in modern working and living
environments. We present in this paper a novel software framework that is able to administer, manage and
control a typical commercial office building. It acts with the environment through common devices like lights,
window blinds etc. and senses from illumination-, temperature-, radiation-, daylight-sensors and presence
detectors. The integration of any other devices is possible (mobile devices, virtual computer network or
household aids).

The framework serves as a fundamental component for any further analysis of a complex and non-stationary
environment. It features numerous highly flexible, reliable and general services to access and control devices
of a building on an abstact level.

Traditional building control requires a manual specification of rules that describe actions which have to be
executed at specific time and sensor conditions. Although it is possible for a human building manager to
specify a configuration explicitly, the size, sophistication and dynamic requirements of a modern building
demands that they have autonomous intelligence which could satisfy the needs of its inhabitants without
human intervention. We describe in this paper our approach to apply such an autonomous intelligence to a
typical commercial office building.

Modern buildings are changing their nature from static structures to dynamic working and living environ-
ments that can actively support and assist their inhabitants. Occupants can move, come or leave within
short time and large office environments are often under dynamic reconfiguration. More and more, such
multi office environments are shared among different users and mobile walls are arranged to set bound-
aries between different working places. Traditional wall switches become mobile and are set-up based on
the current structure configuration that implies also a frequent reconfiguring of the links to their effecting
devices.

We present here an approach which is able to learn in such a dynamic environment from non-explicit feedback
of users. There is no special interaction mechanism with which users can communicate with the controlling
system. Occupants of a building should not notice that the building they are in, is actually intelligent which
means that he can only interact indirectly through common devices (e.g. wall switch, presence detector).

Further, we tackle interesting challenges in such a non-stationary environment with a novel specifically
developed learning and controlling architecture. Local controllers are acting and learning non-supervised
in a sub-part of the whole structure and take decisions based on two different memories. One part of this
controller is learning with a one-shot learning algorithm a temporary knowledge (short-term-memory). It is
able to learn a new or unusual behavior immediately (e.g. a temporary new user in a room). But on the
other side a long-term memory learns conditions which were repeated or occur frequently. The verification
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and transition of such higher-level information occurs online and can therefore change also dynamically the
long-term memory.

An evolutionary algorithm, which is used in collaboration with a fuzzy-variant boosting algorithm, learns
as few and as general as possible fuzzy logic rules. An iterative learning approach activates the evolution
of an given rulebase. The fittest solution after each evolution will be part of the new ruleset before the
adaptive boosting algorithm changes the relative distribution of the long-term memory in order to focus the
genetic search on still uncovered areas. The whole evolving of the rulebase can be divided into two phases:
a generation and afterwards in a refining phase.

1.2 Content

This document is structured into seven parts: Introduction (part I), Learning and Controlling (part II),
Architecture, Design and Implementation (part III), Results and Discussion (part IV), Conclusion and
Future Works (part V), Appendix (part VI) and the Glossary and Bibliography (part VII).

The first part (I) gives a general introduction in the problem of making an building really intelligent and we
are discussing the aims of our project. We introduce in chapter 1 the conclusions of previous works of the
Adaptive Building Intelligence. We mention related works which are also dealing with intelligent buildings
and show the differences to our project. The chapter motivation (2) illustrates what interesting challenges
in an intelligent building and gives reasons why it is worth to apply an ambient intelligence into everydays
life.

Issues and challenges in a non-stationary and complex environment like a typical building is, are described
in chapter 4. We propose our approach with a parallel fuzzy control and learning architecture, based on a
temporary and a memory-based learning unit in chapter 5. The process of knowledge transition is explained
in chapter 5 as well. The detailed temporary learning algorithm is explained in chapter 6. Based on the long-
term memory we use an evolutionary learning algorithm (see chapter 7) to get an optimal fuzzy rulebase.
The chapter 8 deals with the delayed behavior of specific devices within a building and explains our solutions
to tackle these problems.

The part III gives a detailed overview of the whole software architecture and the real implementation of our
framework with its multi-agent system. The chapter 9 points out the main requirements of our framework.
Section 9.3 documents the advantages of choosing a multi-agent system instead of conventional software
architecture. We describe the concept of the multi-agent system’s basic services in detail. The actual
implementation is described in chapter 10, where we explain major points within each agent as well as their
internal class collaboration. The control agent (section 10.4 and 10.5) gives a detailed explanation of the
implementation of our novel control and learning architecture.

In part IV, we discuss in chapter 11, 12 and 13 first results of our approach and list our assumptions. As this
diploma thesis is very limited in time were were not able to make a detailed analysis after the development
and implementation of the whole framework and algorithms. However, we are planning to set up different
test cases where we are expecting to see more evidences how good our system performs in terms of user
satisfaction.

In the final part V, we conclude our approach (14) and posse issues which have to be fixed in the near future
(see chapter 15) in order to deploy our system in large size.

The appendix VI has a brief explanation of the fuzzy logic notation which we use in this paper. The glossary
(VII) lists important abbreviations that are often used.

1.3 Related Work

This diploma thesis is mainly a continuation of the Adaptive Building Intelligence project and was conducted
during the period from October to December 2003 at the Institute of Neuroinformatics, University / ETH
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Zurich in Switzerland. After the work of our predecessors which is described in [RS02] and [RJD04] we
analyzed firstly the behavior of typical multi-sensor environments [TZR+03] [TZ03a] like the collection of
common sensors in buildings are. We proved that the assumptions of our predecessors was sufficient which
is saying that states of effectors are only dependent on a subset of all sensors within a building. This makes
it possible to control a building with a large collection of small controllers which is also more efficient from
a computational point of view and enables a fast and nearly-realtime decision making.

After a long-term analysis of the proposed architecture and learning algorithm in [RJD04] we conclude that
the main idea of the architecture itself is an ideal basis to work with. The learning algorithm is however not
able to maintain a memory of already learnt knowledge. Rules which have been learnt can be rejected with
only one new instruction although they have been learnt and rewarded by many samples before.

We implemented therefore a new framework which is able to cope with a dynamic structure and manage
different input systems (multiple fieldbuses, computer networks, etc.) simultaneously. With an abstraction
layer all devices can be processed anywhere in the software without knowing its specific implementation and
properties. Furthermore, we extended the system with new goals such as energy reduction and developed a
novel learning and controlling architecture.

There are also a variety of other related projects being conducted at other places in similar environments.
A group in Sweden [DB00] [BDY99] applies a multi-agent system as well in order to control an intelligent
building. Their research focus on the energy consumption reduction but with still satisfying users with a
high comfort. Individual preferences indeed has to be programmed in advance and their agents do not learn
behavior of inhabitants. However, they could prove that their approach could reduce energy consumption
around 40% compared to the same building which was only controlled by its users.

Another group [Moz98] [Moz99] is concerning more about home automation. Their system is able to program
itself and maintain traditional elements in a house (light, air- and water-heating, ventilation) by observing
the lifestyle and desires of inhabitants. In difference to our work, they use a centralized control architecture.

Perhaps the most similar approach to our work is presented in [HCCC03], where they describe a system with
different sensors of a room connected via a sensor network to a single embedded agent that is located phys-
ically in this particular room. This agent learns with a genetic learning paradigm fuzzy rules. The learning
is indeed supervised and receives explicit feedback from the user with proactive interaction mechanisms.

Robotics can be seen as a related field where research is encountered to more or less similar problems.
However, a building has special requirements that need novel solutions because a building completely contains
its environment not like a robot which moves trough an environment.
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Chapter 2

Motivation

Within this chapter we motivate why it is worth trying to apply an autonomous intelligence in a working
or living environment like a typical building. At first glance, it looks maybe like an easy task to control
a building by configuring it with some specific rules. Traditional building control systems are able to
operate with manually or sometimes also semi-automated rule generation. However, this rule specification is
neither convenient nor cost effective. A building has to be regarded as a non-stationary environment where
structure changes due to the fact that users move, come and leave more or less continuously. Changes of
the physical structure have also to be considered as in nowadays multi office environments mobile walls can
be rearranged, devices can be installed or replaced. A manually configured system will not satisfy all these
constraints because once it is programmed, the building its structure has perhaps already changed.

A control system demands therefore an autonomous intelligence that could satisfy the needs of the building’s
inhabitants without explicit human intervention. It must be able to configure itself to the dynamic require-
ments of different instances: individual users which work or live in the building and the human building
mananger.

Preferences and desires of each individual inhabitant can not or only hardly be described with a mathematical
model and the collaboration with a building results in a complex environment. The control system has to
sense in the environment and react to specific conditions. The occurrence of such conditions is indeed not
predictable.

However, we want to show with our approach that it is possible to increase the comfort of individual users
and still reduce the energy consumption of the whole building. One major issue is the learning from non-
explicit feedback where the user does not notice our system which is running in the background. He has no
possibility to communicate directly with the system.

As we have seen in our anaylsis in our last project [TZR+03], it is possible to control individual effectors (such
as lights, window blinds) only with a subset of sensors (e.g. daylight, presence signal, outdoor illumination,
temperature). This enables us to use a distributed artifical intelligence (DAI) that learns a knowledge on
local basis. The sharing of experiences between such local controllers poses many interesting challenges.

Imagine, at one day in future we are living in homes and working in offices which are controlled by such
ambient intelligence. They can assist people with the simplest task which is to switch on the light if they
enter into a dark room. But the scope of such an intelligent system can reach far beyond this simple scenario.
Future intelligent systems are able to identify persons and maintain their individual perferences on which
the system can adapt the environment in order to increase the comfort for the inhabitants. People may have
different ways to interact and control their surrounding environment with mobile devices such as simple
mobile control devices or even small portable computers.

Other scenarios are that an intelligent system can provide security in an office or also living building. It
learns how to behave in a emergency case and because it knows where people are it is able for example to
support them by guiding them out of the building or by just shutting down all critical elements. Therefore
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such a system must have a way to asses itself in terms of behavior, error and success.

Althought these visions sound at the moment not contemporary, we believe that the integration of au-
tonomous and self-adapting control system into our daily life will come true in the near future. This work
is, like all related projects, a first step towards this vision.
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Chapter 3

Access to a Multi-Sensor Environment

In order to do performance analysis of an intelligent system in a real working and living environment, we need
access to all sensors and effectors within rooms, floors or even a whole building. This work was conducted at
the Institute of Neuroinformatics (INI) where we had access to the fieldbus of the building to communicate
with all common sensors and effectors.

This chapter gives a brief overview of the architecture of the building and explains the concept how devices
on the fieldbus can be reached from a normal TCP/IP network.

3.1 Architecture of our Intelligent Building

The environment in which our system runs, consits of many rooms with different size and shapes. In some
of them only one person is working whereas in others are many. Figure 3.1 illustrates one of the two floors
of the Institute of Neuroinformatics where our system is running.
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8575

Presence

Light

Blinds

Outside 
Sensors

LonWorks

Gateway

IP

MAS

Key

78 80 84 86 88

79 87

2628

Figure 3.1: The multi-sensor environment within the Institute of Neuroinformatics. Multiple sensors and
effectors distributed on different 12 rooms on one floor can be accessed over a fieldbus.

Our system is currently controlling four different rooms on the mentioned floor. But as soon as the testing
over a long-term period is successful, we are going to deploy it to other rooms.
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Figure 3.2: LonWorks Gateway iLon which provides the communication with a LNS Server and further this
one with the multi agent system.

3.1.1 Properties of Sensors and Effectors

The building where our system is running is equipped with a variety of different sensors and effectors. All
of them are common standard devices like in every normal office building and do not have any additional
intelligence. Almost all rooms of the building are equipped with wall switches and presence, temperature,
illumination and air conditioning sensors. There are also several outside sensors installed around and on top
of the building (e.g. temperature, illumination, humidity). Further, each room has different effectors like for
example lights, window blinds or air-conditioning.

All of these sensors and effectors have an individual range in which they can sense or act based on the
physical constraints. Some of them have a discrete range whereas others have an continuous range like the
illumination sensor which is only bound by a upper respectively lower bound. Some of the effectors have
also a analog value range but we regard them up to now still as digital devices where we can set them to a
discrete number of states.

3.2 Access to Fieldbus LonWorks over a Gateway

All devices are connected together over a fieldbus called LonWorks [loc] which is a product from Echelon.
Every device can be set to a specific state by sending it a request message. Obversely, anybody can register
itself as a listener to a device and receive an update message as soon as the device changes its state.

Messages on the fieldbus are routed between the different networks by specific LonWork routers. And a
central unit has also a set of hard-wired rules that define which sensor can change which effectors (e.g. if
wall switch 1 is pressed switch off/on light 2). Therefore it is possible to link all devices in an arbitrarily
manner.

We have access to the LonWorks fieldbus via an LonWorks-IP gateway called iLon [iLO] that translates
messages between the two networks. Therefore it is possible to request and set states of all sensors and
effectors from a client in a IP network which uses the mentioned gateway. The LNS Java API [LNS] enables
us to communicate with a LNS Server which processes and forwards requests or responses to the iLon
Gateway respectively back to our software.
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Part II

Learning and Controlling
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Chapter 4

Learning Requirements in a Complex
and Dynamic Environment Based on
Sparse User Interaction

An intelligent building should take decisions about the different effectors such that the users do not have
to make them themself. At first glance, it might look like an easy task to control the building based on
a few pre-specified rules. Nowadays buildings are controlled with some manually or semi-automated rules
which have to be specified by a human building manager. These building control systems lacks mostly in
self-configuring and adapting itself to the current preferences and needs of users. People are often bothered
by such systems because they are constantly doing the same action triggered by a few conditions.

A building which is indeed really intelligent should learn from its users, configure itself and adapt to the
current preferences and needs of inhabitants without annoying them. Such an autonomous intelligence
should act in the background that users are not directly notice its existence because there are no special
interaction mechanisms to communicate with the system – this type of intelligence is often classified to
ambient intelligence.

We bring up in this chapter some crucial issues which have to be solved by an autonomous intelligence that
is able to learn continuously from building its users and satisfy them as much as possible.

4.1 Non-Stationary Environment

Usually, learning occurs on the basis of a pre-defined representation (e.g. number of variables, possible values
of these variables), which implies that the underlying structure of the problem itself is static. In the case of
an intelligent building, we can not assume such a stability. Structure must be able to detect and incorporate
structural changes at any point of time. We think hereby by incorporating new devices or changing the
physical structure (e.g. by installing new walls in a multi-office working environment).

Beside the dynamic behavior of the structure we regard users within the building as additional agents who
are part of the structure. But different than the normal structure they can behave as a mobile agent due to
the fact that they move from one part of the structure to another one within a short time.

The building is occupied by different users who may also come and go. All users have their own desire of an
optimal working environment. The preferences of them is constantly changing thus something which have
been learnt may be valid at the present time but it may become valid in the future.
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4.2 Sparse User Interaction

One aspect that makes learning of a user behavior difficult is that the user instructions are very sparse. Some
devices switches their states only a few time per day. To give sparse a more precise meaning the table 4.1
shows how many times a device has notified a changed state (we call it a spike). The number of spikes are
the accumulated number of user instructions within a time period of 38 day. The data was collected during
the project Adaptive Structure Discovery [TZR+03]. Especially the blinds were used only a few times which
makes a learning even harder. Some of them changed their state only one time within three days.

Room Device Spikes Room Device Spikes
Room 86 light 1 77 Room 78 light 1 39

light 2 73 light 2 38
blind 1 30 blind 1 11
presence 1 118 presence 1 180

Room 80 light 1 293 Room 26 light 1 20
light 2 11 light 2 181
blind 1 50 blind 1 11
presence 1 113 blind 2 33

presence 1 296
presence 2 195

Room 75 light 1 56 Room 75 blind 1 51
light 2 14 blind 2 40
light 3 134 presence 1 772
light 4 7 presence 2 803

Table 4.1: User instruction data acquired over 38 days in the summer 2003 on five different rooms located
on different orientations of the building and also with a different shape.

4.3 No Positive User Feedback

We regard learning from non-explicit feedback as one major issue in making an building intelligent. The
user should not notice if he is interacting with an ambient intelligence that implies that there are no special
devices or mechanisms with which the user can give a feedback to the controlling system.

The user can only instruct the system with new instructions that are saying how he would like the current
state of environment to be. These instructions can be regarded as real instructions or as a punishment if the
system has recently changed the state of an effector. An instruction is therefore never a positive feedback
(reward) which means that the user is saying he is pleased with the current state.

4.4 Consistency of Different Goals

A user has the goal to reach a maximum comfort in the area where he is working but on the other side, the
building should also have the goal to consume as less energy as possible. These two goals will always stay
in conflict if a user is present. Our system should find a solution that both goals can be reached at least
partially.

Our system is right now equipped with normal presence detectors which can sense a movement inside a
specific view range. But they are not able to count people or even to identify different persons. We are
working on a personal presence detector which runs on a personal computer and detects if a user is working
or is absent. With these sensors we can learn also each individual behavior but on the other side this implies
also much more conflicting goals which have to be reached. Imagine a group of users which are working
inside the same room and each has a different notion of maximum comfort.
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4.5 Acting on Multiple Layers in a Dynamic Environment

A typical commercial building is equipped with numerous different sensors and effectors which are accessable
through one or even more fieldbuses. Those systems are typically programmed that each effectors is aware
of which sensor it is effecting. An autonomous intelligence should not replace such pre-programmed rules
rather it should support the human building manger with the configuring of the overall controlling task.

4.5.1 Multilayered Controlling

Input and output variables of a building are high dimensional, which would make it impractical from a
computational point of view to control the whole building with just one controller.

As we have analyzed in our previous project [TZR+03] individual effectors (lights, blinds, etc.) are only
influenced by a small subset of all possible input sensors. It is therefore appropriate to control these effectors
one a local basis. We use for each of them an individual controller with multiple input dimensions (MISO)
also to simplify the design of such a system by considering computational complexity and learning issues.
Decisions have to be made in nearly real-time and new instructions must be incorporated immediately. These
local controllers enables a fast and efficient controlling due to a small set of input signals.

The assembling of many such small controllers makes it possible to control a whole commercial building.
Local controllers should be able to collaborate, exchange knowledge or trying to win against the others.

The whole decision making should be distributed on different layers without any central control that makes
a controlling impossible once it would crash. To have a reliable system we want to have multiple small
controllers which can act in a sub-part of the building and have to collaborate. Direct decisions by a user
should be executed directly be the buildings devices on a lower layer. Our system should act and learn on
a higher layer from these instructions in a more abstract way.
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Chapter 5

Parallel Fuzzy Control Architecture
with a Temporary and Memory-Based
Learning Unit

5.1 Overview

An autonomous intelligence which is able to meet the needs and preferences of users in a typical working
or living environment has to adapt itself in order to increase users comfort. It must learn from non-explicit
interaction with users and must tackles issues like aging, forgetting in a short- and long-term-memory [Zho90].
User interaction in a such environments is typical very sparse where it is a very important requirement that
it can assess itself in terms of behavior, error and success.

As we have explained in the last chapter, we have to learn against a non-stationary environment were
demands of users and the building itself can change over time and may sometimes be contradictory. As the
users are part of the structure and are able to move, change or leave continuously, the building will be used
differently by looking at it with a temporary view. A short-term-memory has to learn these preferences
and control effectors in such a way that the users are satisfied. Knowledge which has been learnt and is
valid at present time may become false in the future. A control and learning instance must therefore forget
temporary knowledge if it does not get rewarded.

To learn the long-term behavior of a building, an autonomous intelligence has to look for conditions which
occur frequently or regularly, but from an abstract point of view. Knowledge which will be learnt from a
long-term-memory was not only valid in the last few days. It should incorporate the general behavior of
a building by considering different occupants but rather also seasons. Controlling a building in wintertime
differs from another season and vice versa.

We present here an architecture which is able to act in a sub-part of a building and learn from users in
order to satisfy them and still trying to reach goals of the building manager (energy consumption, security).
We discuss first why and how we applied fuzzy knowledge representation and reasoning to control effectors
based on different input sensors. A detailed explanations of the architecture will follow and the next chapters
explain two learning algorithms from a general view.

5.2 Approximated Reasoning and Knowledge Representation

An intelligent building has to take decisions in nearly realtime based on a specific knowledge that can be
manually predefined or learnt online from instructions given from the users. It is desirable to have a system
that uses a human-readable representation of this knowledge. A very common way of representation are
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rules which can either be manually defined or learnt autonomously. Rules are constituted of a condition
and an action part, which will be executed if the condition is true. The condition part can hold multiple
subconditions whereas the connection between them specifies if the overall condition is true when at least
one subcondition is true or all have to be true.

Effectors of a building are controlled based on a subset of sensors. The value range of sensors have to be
discretized before any efficient rule specification can be made. This is because sensors have an continuous
value range and it would impractical to have rules which only trigger if a sensor is exactly equal a specific
value. A system is only with a small set of rules manageable. The discretization of such sensor values is not
an easy task because e.g. the illumination is not escalate from dark to bright. The border has to be fuzzy
where it is mixture of dark and bright.

Fuzzy system are suitable to reason in a uncertain or approximated domain, where it is difficult to derive
a mathematical model of the environment. Fuzzy logic allows decision making with estimated values under
vague or uncertain knowledge. The approximated reasoning in a fuzzy system can be compared to the human
cognitive processes whereby the perception is rather a matter of degree than binary. We use this similarity
in order to reason about the environment and take the advantage of the fuzzy rule representation.

5.2.1 Fuzzy Logic Controller

A fuzzy logic controller (FLC) takes decisions on a set of fuzzy rules which describe the relationship between
different fuzzy variables. A FLC can only process fuzzy input and output values which implies that all crisp
input values have to be fuzzified first. A typical interferencing process (see figure 5.1) in a FLC is defined
like the following steps:

Fuzzy
Interference

Engine
Fuzzification Defuzzification

Fuzzy Rulebase

Fuzzy Logic Controller

Inputs Output

Figure 5.1: Fuzzy interferencing process

• Fuzzification of input variables: All crisp inputs values are assigned with a specific degree to the
corresponding fuzzy membership functions.

• Rule evaluation: All rules which are part of a fuzzy rulebase will be evaluated if they match with
the current fuzzified input values. A matching rule is also called as firing rule.

• Aggregation of the rule outputs: All firing rules are proposing to execute an action to a specific
degree. The aggregation process combines all firing rules into one fuzzy set which represents the fuzzy
decision that has to be taken.

• Defuzzification: As the decision is still in a fuzzy form, the last step of the fuzzy control process
translates a fuzzy decision into a crisp value. The defuzzification is deferred to the last possible point
of time because it is not for free. A lot of information will be lost because they can not be represented
with a single crisp value.

A typical commercial building can sense the environment through several different sensors. A few are simple
binary sensors (like presence detectors) but most of them have an analogue value range (like temperature,
illumination, etc.). The fuzzification process assigns all crisp sensor values to predefined fuzzy membership
functions. A fuzzy input variable can be assigned to different membership function with a specific degree.
Such membership functions (MF) have a cognitive label and are mostly pre-defined. MF’s for temperature
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can be defined as cold (less than 5◦C), cool (5-15◦C), normal (10-25◦C), warm (20-35◦C) and hot for more
than 30◦C. A temperature around 22 ◦C is therefore normal but also warm to a certain degree. Fuzzy logic
takes this imprecise knowledge into account where the finite number of fuzzy membership functions can
overlap each other.

This vague knowledge can now also be used in fuzzy rules where each condition can be true if a fuzzy variable
is in one of several conditional states. A possible rule to control a heating system could be:

IF outside temperature IS cold, cool AND inside temperature IS cool
THEN heating IS slightly increased.

5.2.2 Design of Membership Functions

In order to fuzzify all input sensors and effectors of a building, we have do define a set of membership
functions for each device type. We use in our system up to now pre-defined functions (Triangular, Shoulder
and Trapezoidal [Ful00]) which are static, whereas it would be thinkable to tune their shape during operation.
Figure 5.2.2 shows the graphical representation of all MF from each device type.
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Figure 5.2: Definition of our used fuzzy membership functions.

5.3 Parallel Architecture of a Control Unit

A control unit which is able to learn in a non-stationary domain like working and living environments, has to
tackle many challenges. Users can never give positive feedback through common devices which are typically
installed in a building. Learning happens from non-explicit feedback without any special mechanism. New
instructions have to be incorporated immediately into the knowledge and decisions have to be taken nearly
in real-time. As we have already mentioned, there are at least two different levels of knowledge abstractions.
One memorizes temporary knowledge which is at the moment true but was maybe different in the past and
also in the future. Another, the long-term-memory, should hold knowledge that is valid over a longer period
and not forget as fast as a temporary short-term-memory.

Temporary
Controller

Sensor Value 1
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Sensor Value 4

Sensor Value 5

Sensor Value 6

Effector 1 Action

Output

Input Sensors
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Controller
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Controller
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Figure 5.3: Parallel architecture of two controllers where one is learning a rulebase on a more abstract layer
than the other.

Figure 5.3 present our proposed fuzzy control architecture which is able to tackle these challenges. Two
different controlling and learning units are acting in parallel whereas a decision unit evaluates the actions

diploma thesis, december 2003



5.3. PARALLEL ARCHITECTURE OF A CONTROL UNIT 17

taken by these two control units. The figure illustrates also the relationship between those two controlling
units. Both have the same input sensor values to take decisions.

5.3.1 Temporary Model

The main idea of a temporary controller is to have a One Shot Learning which incorporates new knowledge
immediately into the definitive ruleset. It has no memory about how important each individual rule is in a
previous set of rules and how much it would cost to remove or modify a selection of them. The purpose in
our adaptive building intelligence system is mainly that a user can always learn the system a behavior just
with one instruction. An instruction given by the user must win against all other decisions proposed by our
system because it was only recently learnt from the user. The user should never have the feeling that the
system takes control over himself or the environment around him instead of supporting him.

The temporary controller is able to learn online from very sparse user interaction and supports all those
users which are new in a building or are using its effectors different than in general. The user can only
modify directly the knowledge of the temporary controller. Knowledge which becomes long-term can not be
learnt at one instance.

For more details about the algorithm which is used within the temporary controller and its internal archi-
tecture we refer to chapter 6.

5.3.2 Memory-Based Model

Beside the temporary controller, another controller should take decisions based on a dynamic rulebase which
is gradually adapted to temporary rules that are proved to be valid over a longer period. This controller
should learn to adapt its rulebase in a way that it firstly covers new acquired knowledge and secondly still
holds rules already learnt. For this reason it must have a memory of a valid and robust set of rules. The
goal is further to have as general as possible rules and also the least possible set size.

This controller uses a hybrid architecture which has also been applied in other related projects such as
robotics [Bon96], [Hof98],[HKS98] and as well in intelligent buildings [HCCC03]. Often proposed hybrid
architectures use the advantages of an expert system in collaboration with neural networks or evolutionary
algorithms. A normal expert system is able to make decisions based on a static expert knowledge but
is not able to acquire new knowledge and learn from its environment. Neural network and evolutionary
algorithms are techniques to learn from examples whereas these can not represent its learnt knowledge in
an easy human-readable format. Thus, many attempts are trying to use the advantages of expert systems
and learning algorithms to learn a set of rules which are firstly easy understandable and secondly used as
an expert knowledge-base.

The big disadvantage of typical learning algorithms is that they require a lot of training samples in order
to learn a good classifier which can be represented in rules. We do not have such training samples and
our system can not be trained in a simulated environment because the environment is changing consistently
(non-stationary). The system has to learn online and can not be stopped once it reaches a unknown state
to be trained be again.

Thus, the memory-based controller must be able to adapt its rulebase the least as possible but still cover also
new available knowledge. We propose a genetic fuzzy logic controller (GFLC) which modifies its rulebase
like the natural evolution would do it. The already learnt rulebase will be modified with genetic operations
(reproduction, crossover, mutation) in order to receive a better rulebase. The crucial point here is to define
a clear and selective criteria that classifies the outcome of a genetic operation. Genetic algorithms have
been proven in many approaches but they do have the disadvantage to consume a lot of time for the genetic
search. As we know that not the whole state space is ever reached from a combination of typical sensors
we can guide the genetic algorithm in order to reduce the genetic search. More detail about the internal
architecture and the whole learning algorithm is explained in chapter 7.
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5.3.3 Transition from Temporary into Memorized Knowledge

The process of the verification of new knowledge which can be incorporated into the long-term memory must
also happen continuously. Knowledge which has been proven in the temporary controller carries higher-level
information and are transfered into the memory-based model where they are incorporated in the already
learnt memory. During this transition the rules has to be generalized because the memory learns in a more
abstract way.

The following process explains how knowledge can be transfered from the temporary into the memory-
based model. The longer a temporary condition will hold the more important is this information and the
stronger the transition process. Next to the importance of time there is also the activity which has to be
considered. A system which is highly active implies that knowledge is only valid for a short period of time
and a generalization is much more difficult to derive.

The Knowledge Transition Process

Step 1 Transform real-valued sample into an instruction (fuzzification of input and action values).

Step 2 Instruction It becomes valid in a temporary way and has to prove its trueness.

Step 3 Wait for a new instruction It+1 within a timedelay tverification.

Step 4 If a new instruction It+1 was received within the timedelay tverification reject instruction It, assign
It+1 to It and go to step 1.

Step 5 If instruction It was not rejected, generate a new instruction Imem with a weight wmem and transfer
it into the memory unit.

Step 6 Memory unit accumulates the weight wmem of the new instruction Imem to the already acquired weights
w of similar instructions.

Step 7 Wait for a new instruction It+2 within a timedelay tactivity.

Step 8 If a new instruction It+2 was received reject instruction It, assign It+2 to It and go to step 1.

Step 9 Go to step 5.

The continuous process of rewarding rules which have been proven valid means that the system will learn
from itself. The knowledge transition can only indirectly be controlled by users through changing the current
state of the environment. The system is able to generate a positive feedback which is not possible for any
user. Such an autonomous system adapts itself to these states in which the system has ever been. The longer
and more it is in a specific state the more accurate will the knowledge in this state become.

5.3.4 Decision Making and Instruction Generation

Figure 5.3 illustrates the relationship between the temporary and the memory-based controller. The overall
process which describes how decisions are taken and the system receives instructions from the user is ex-
plained here in a more formal way. In general, a feedback from a user can be regarded as an instruction or
as a indirect punishment of the last taken decision.

The overall process is totally event-triggered and is therefore not periodically executed (∆ti between instruc-
tions I1,I2,...,In is not constant and furthermore ∆ti � 0). All input crisp values are fuzzified in a first step
before they are processed in the system. Both controllers, the temporary and memory-based, take decisions
simultaneously if their memory has a knowledge about the current conditions.
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Overall control and decision process

Step 0 Wait for a new instruction.

Step 1 Transform real-valued sample into a instruction It (fuzzification of input and action values)

Step 2 If fuzzyfied instruction f(It) is different to the last one Ilast transfer instruction It to the transition
process and assign f(It) to Ilast.

Step 3 If instruction It was triggered by a state change of the effector proceed to step 7. Otherwise the
instruction was triggered by a sensor update.

Step 4 Check if a decision can be made for new input sensor values of instruction It by asking the temporary
decision unit and the memorized decision unit. If temporary decision unit has a decision dstm with a
truth value tstm above a threshold thresstm, set effector to new state given from decision dstm. Go to
step 0.

Step 5 If memorized decision unit can give a decision dltm with a truth value tltm, set effector to new state
given from decision dltm. Go to step 0.

Step 6 If both decision units can not give a decision, go to step 0.

Step 7 If this instruction was received immediately after the effector was set to a new state, it is a feedback
(system delay tsysdelay has to be considered). Go to step 0.
Otherwise it is an instruction from the user.

Step 8 Transfer new instruction It to the temporary learning unit. Go to step 0.

More information about the current implementation of such a controller can be found in chapter 10.5.
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Chapter 6

Learning a Temporary Fuzzy Rulebase
with an Anytime Learning Algorithm

6.1 Overview

This chapter is about the learning algorithm used for the temporary decision unit. It is an online learning
algorithm which updates its rulebase incrementally by every new instructions. Theses instructions can only
be made explicit by the user. An instruction is constituted of real-valued input values acquired from sensors
and a real-valued effector/action value. The input of this learning algorithm are such real-valued instructions
whereas the output of the learning algorithm is a set of fuzzy rules. These fuzzy rules can be used in a further
step in a fuzzy logic controller to take decisions.

The architecture where this one-shot learning is applied is illustrated in figure 7.1. The temporary controller
has two fuzzy logic controller whereas one is learning a dynamic rulebase for the other. The later one takes
actually decision about an effector based on fuzzified sensor inputs. The other one has a static rulebase
which is mainly for the fuzzyfication of the instructions and further for the generation of new rules that will
be incorporated into the dynamic decision rulebase.

The design of this algorithm is inspired by several related approaches [CCSZ21], [CZ16] and our predecessors
approach [RJD04].

6.2 One Shot Learning Algorithm

The learning algorithm learns a disjoint set of fuzzy rules from sparse user interactions. Instructions have
to be incorporated immediately such that it can be used for any further reasoning. The algorithm generates
a set of rules which can be replaced by any contrary instruction. We use here largely the same notation as
in [RJD04] and [Ful00].

6.2.1 Definitions

Definition 1 (more general) A rule Ri is more general then a rule Rj if
∑|Ei|

k=1 |Eik| >
∑|Ej |

k=1 |Ejk| is
true.
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Figure 6.1: Architecture of the temporary controller. One controller takes decision based on a dynamic
rulesbase which is learnt from a second controller.

6.2.2 Operators

The algorithm uses the operators antecedentSubsume, overlap and reduce.

Definition 2 (antecedentSubsume) antecedentSubsume(Ri, Rj) is true if the following conditions holds
for all Eik of Ri: For all k = 1 . . . N it is true that Eik ⊂ Ejk. N is the number of fuzzy variables.
antecedentSubsume(Ri, Rj) is true if the above conditions hold and yi 6= yj or yi = yj.

Definition 3 (overlap) The rule Ri overlaps rule Rj if the following condition is valid for all Eik of Ri:
For all k = 1 . . . N it is true that |(Eik ∩ Ejk)| ≥ 1. N is the number of fuzzy variables and ∩ is the
intersection of two sets.

Definition 4 (reduce) The rule Rd can be reduced with rule Ri by executing the following operation on
all Edk of Rd: Evaluate for all k = 1 . . . N if the reduction Edk = Edk − Eik (evaluation by removing all
conditions Eik ⊂ Edk from Edk) removes the least possible state area whereas N is the number of fuzzy
variables. A reduction is possible by just reducing one fuzzy variable. Reduce therefore only the fuzzy input
dimension k evaluated before and assign Edk = Edk − Eik.

6.2.3 Algorithm

The following procedure is executed everytime the system receives a new instruction.

Step 0 Wait for a new sample

Step 1 Transform real-valued sample into instruction It (fuzzification)
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Step 2 Make a fuzzy rule Ri of this instruction It and label it also with its weight w

Step 3 Remove all rules Rd which are part of the definitive ruleset (Rd ∈Rdef ) and where antecedentSubsume(Ri, Rd)
is true.

Step 4 Check if rule Ri has an overlap with any definitive rules (Rd ∈ Rdef ). If yes, make a set Rred with all
rules Rd where overlap(Ri, Rd) is true. Otherwise proceed with step 6.

Step 5 Execute for all rules Rd which are member of set Rred the operation reduce(Ri, Rd) in order that
overlap(Ri, Rd) is false.

Step 6 Add new rule Ri with its weight w into definitive ruleset Rdef .

Step 7 Go to step 0.

Rules which have been generated by this listed algorithm are part of a fuzzy rulebase on which a fuzzy logic
controller takes its decisions. The rulebase itself is the temporary memory and will therefore stay always
under the dynamic process of forgetting. Once a rule is too old, it will dissapear from the rulebase. A user
can therefore reward rules by giving the user a new instruction.

Features of this Algorithm

• online / anytime

• learns incrementally from sparse user interaction

• adapt itself to changing conditions

• learnt rules loose truth and have only a limited lifetime

• rulebase is under the dynamic constraint of forgetting
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Chapter 7

Evolutionary Learning of a
Generalized Fuzzy Rulebase with a
Long-Term Memory

7.1 Overview

In addition to the learning algorithm explained in the last chapter we propose here an evolutionary algorithm
which learns a fuzzy rulebase for a memory-based fuzzy logic controller. Rules which have been proved valid
in the temporary control unit are an input reward signal for this evolutionary algorithm. Like illustrated in
figure 7.1 a memory receives the generalized reward signal if a temporary rule was successfully verified. The
memory is divided into s fuzzy areas, whereas s is defined in equation 7.2.

N = |{X0, X1, . . . , XN−1}| (7.1)

s =
N∏

k=1

|L(Xk)| (7.2)

N is the number of all possible fuzzy input variables that can be considered in the condition part of a fuzzy
rule. Xi is a possible fuzzy input variable and L(Xi) is the number of possible fuzzy states of fuzzy variable
Xi. More detail about our notation can be found in appendix A. The state space is therefore constituted
of s fuzzy areas whereby these can overlap each other based on the design of the individual membership
functions.

7.2 Long-Term Memory

After the verification of a temporary rule the memory receives a reward signal with the specific fuzzy rule.
It verifies which fuzzy areas are covered by this new rule and accumulates the reward to the corresponding
areas. Due to this process these areas will gain importance with such a reward against all others. See figure
7.2 which illustrates how a fuzzy areas of a reward will be determined and the corresponding action weight
will be accumulated.

Because a fuzzy rule is constituted of some conditions and an action, the later one has also to be considered.
All other actions which are already defined inside a fuzzy area will decrease and only the one which is equal
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Figure 7.1: Internal architecture of the memory-based controller. Reward signals are first evaluated and
generalized before they will be incorporated into the fuzzy memory. A genetic fuzzy system generates with
an iterative rule learning approach a fuzzy rulebase on which a common fuzzy logic controller takes decisions.
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if X0 = T AND X1 = B then Y = ON
if X0 = W AND X1 = A then Y = OFF

Figure 7.2: An example how proved rules from the temporary learning unit can be incorporated as a reward
in the memory. All fuzzy areas which are covered by the reward rule and have the same action as the rule’s
action gets rewarded. The memory accumulates the reward to the already acquired rewards from the past.
All other actions of these fuzzy areas are decreased which implies an competition between all actions.
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to the rewards action will increase. The weight range of such a fuzzy area is therefore limited with an upper
and lower bound whereby the different actions compete against each other to reach the maximum weight.

The memory itself is fuzzy and holds therefore imprecise knowledge about the environment. It serves also
as an input for the evolutionary algorithm which has to find an optimal set of rules which cover the current
memory. Optimal means not only to find a small set of rules which cover the whole state space. Additionally,
rules should cover areas where really a knowledge is and should cover consistent areas. A rule which covers
different actions is not as good as a rule which covers only uniform fuzzy areas.

Before the memory can be processed by the learning algorithm it has to be transformed into a genetic
representation that is easy to evolve by natural genetic operations like crossover, mutation and reproduction.
The encoding is similar to the encoding of a normal fuzzy rule which is explained right below.

7.3 Encoding Fuzzy Rules into a Genotype

Beside the encoding of the fuzzy areas also the current decision rulebase has to be transfered in a fuzzy
genotype. This genotype has to be evolved that it firstly covers the whole memory but secondly does not
differ much from the previous one. A genotype has a population with individual chromosomes where each
one has to represent a fuzzy rule.

Therefore a chromosome must hold all conditions and the action of a fuzzy rule and a transformation back to
into a fuzzy rule must be possible without any loss. Because the number of fuzzy input variables among all
rules inside the same fuzzy logic controller is equal we are able to define the build of a chromosome once. A
chromosome holds typically different genes that contain specific information about a specific property. The
genes of a fuzzy chromosome are representing conditions and the action of a fuzzy rule. Figure 7.3 illustrates
how we define a fuzzy chromosome.

Gene 4

Fuzzy Input
Variable 1

Fuzzy Input
Variable 2

Fuzzy Input
Variable 3

Fuzzy Input
Variable 4

Fuzzy Input
Variable 5

Fuzzy
 Action 

0 0 1 0 1 1 0

F

X 2

A B C D E G

Binary State Array

X 2

Chromosome

Gene 1 Gene 2 Gene 3 Gene 5 Gene 6

Figure 7.3: Design of a fuzzy chromosome: The first gene is the action of a fuzzy rule and the following
ones are fuzzy input variables. A fuzzy gene holds a binary array similar to the size of possible states of the
corresponding fuzzy variable. The value of each bit indicates if the fuzzy variable holds a specific state.
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7.3.1 Fuzzy Gene

The normal fuzzy gene holds a binary array equal to the number of the possible states of the fuzzy input
variable that is represented by this fuzzy gene. Each bit indicates if the fuzzy variable holds a specific state
or not. A fuzzy rule Ri gets transformed into a fuzzy chromosome with |Ei| normal fuzzy genes and a special
fuzzy action gene. Ei is a rule condition for one fuzzy input variable Xi.

7.3.2 Fuzzy Action Gene

The first gene of a fuzzy chromosome is a special one because it represents the action of a fuzzy rule. It also
contains a binary array with a size equal to the number of possible actions. It requires a special treatment
because a fuzzy rule can only have one action and therefore in the fuzzy action gene only one bit can be set
to 1 in contrast to a normal fuzzy gene that can carry more active bits.

7.4 Genetic Operations Applied to a Fuzzy Genotype

The evolutionary algorithm uses genetic operations inspired by nature. This section explains briefly how
these operations can be applied to a fuzzy genotype.

7.4.1 Fuzzy Crossover

A fuzzy crossover selects randomly two parent chromosomes from the population. A locus indicates where
the crossover point is. All information of the genes after the locus point will be crossovered. The locus is
calculated new for each crossover operation. The exact implementation is explained in chapter 10.

7.4.2 Fuzzy Mutation

A population can evolve due to the crossover operation but once it reaches a maximum and all possibilities
are exhausted the fitness of the population is not able to improve more. The fuzzy mutation operation
mutates genes in a chromosome with a given probability pmutate. If a gene mutates, all fuzzy states of this
gene could be set to a random value or further the mutation rate could also be calculated for the individual
states. We use up to now the first mentioned mutation.

7.5 Decoding Fuzzy Rules from a Genotype

Like mentioned in the encoding of a fuzzy rulebase it is a requirement that all fuzzy chromosomes have to
be transformed back into a set of real fuzzy rules without any loss. The transformation takes place like the
encoding whereas each gene becomes a fuzzy input variable and the first gene in the action of the fuzzy rule.

7.6 Definitions

The evolutionary algorithm uses several functions in order to compare and evolve the population. All these
functions are here defined and use the fuzzy notation like in appendix A.

Definition 5 (subsume) subsume(ai, cj) is true if the following conditions holds for all Eik of fuzzy area
ai: For all k = 1 . . . N it is true that Eik ⊂ Ejk. N is the number of fuzzy variables (normal fuzzy genes).
subsume(ai, cj) is only true if the action of Action(ai) is equal to the action of the chromosome Action(ci).
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Definition 6 (antecedentSubsume) antecedentSubsume(ai, cj) is true if the following conditions holds
for all Eik of fuzzy area ai: For all k = 1 . . . N it is true that Eik ⊂ Ejk. N is the number of fuzzy variables
(normal fuzzy genes). antecedentSubsume(ai, cj) does not consider the action value and is therefore still true
if the action of Action(ai) is not equal to the action of the chromosome Action(ci).

Definition 7 (boosting factor) The boosting factor of a solution chromosome ct is calculated based on all
fuzzy anchors a where antecedentSubsume(ai, ct) is true and n is defined as |a|. The boosting factor is a real
value between 0.0 and 1.0 and is used to modify the distribution of the samples which have to be covered by
fuzzy rules.

E(ct) =

∑n
i=1|Act(ai) 6=Act(ct)

wi∑n
i=1 wi

(7.3)

Definition 8 (volume) volume(ai) of a fuzzy area or a fuzzy chromosome is defined as the product of all
active states from each fuzzy variable:

Volume(ai) =
|Ei|∏
k=1

activeStates(Eik) (7.4)

Definition 9 (action) Act(ai) of a fuzzy area or a fuzzy chromosome is defined as the action which this
area or chromosome represents.

7.7 Determining the Fitness of Chromosomes

In order to evolve a genotype, the evolutionary algorithm has to calculate the fitness of a possible solution.
A fitness indicates how good a solution is and increases also the possibility for this particular solution also
to be selected for the next evolution.

As our goal is to find an optimal set of rules which covers the current memory as good as possible the
definition of the fitness function is a very curical step. It has mainly three goals:

• Wrong classified areas: The solution should cover as few as possible wrong classified fuzzy areas.
The fitness of the solution should be decreased more if the wrong classified fuzzy area is an important
one which means that the accumulated weight wi is large. .

• Amplification: A solution has the goal to amplify itself in order to incorporate all equal classified
fuzzy areas. The amplification takes also the relative weight among all samples into account that means
a solution is better if it covers the most important fuzzy areas of a classification.

• Optimal volume: The more equal classified fuzzy areas a solution covers the fitter it is. But solutions
which incorporates also areas where no knowledge is available loose fitness and also if wrong classified
areas are covered by it. The cost to cover a wrong classified area could be bigger than the one to cover
a memoryless area.

All these goals are a factor of the the following equation 7.8. In the following equations A is a set
with all s possible fuzzy areas (see equ 7.2). a is a set of fuzzy areas {a0, a0, . . . an−1} where for all
antecedentSubsume(ai, ct) is true and n is the power of set a. wi is the accumulated weight of a fuzzy
area ai and bi is the classified boosted weight of ai.

err(ct) = 1−
∑n

i=1|Act(ai) 6=Act(ct)
wi∑n

i=1|Act(ai)=Act(ct)
wi

(7.5)

amp(ct) =

∑n
i=1|Act(ai) 6=Act(ct)

bi∑n
i=1

∑s
j=1|Act(ai)=Act(Aj)

bi
(7.6)
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vol((ct) =

∑n
i=1|Act(ai)=Act(ct)

V olume(ai)

V olume(ct)
(7.7)

f(ct) = err(ct)q ∗ amp(ct) ∗ vol(ct) (7.8)

7.8 Adaptive Boosting

The evolutionary algorithm has to find an optimal set of rules which covers the current fuzzy memory. Like
explained, the memory is constituted of s different fuzzy areas that have an accumulated weight for all
possible actions of the controller. These fuzzy areas are the trainingsamples for the evolutionary algorithm.
But before using them, they are classified based on the relative action weight within each area. An area has
for example a positive action weight wON = 50 and a negative one wOFF = 23 whereas this area will be
classified to a positive action with a relative weight bON = 27.

We use an iterative rule learning approach (IRL) [GH97] which is repeatedly invoked to generate a new
evolution and incrementally adds the best solution to the new ruleset. The relative weight bi specifies the
relative importance between different fuzzy areas. The fitness function specifies that the best solution is one
which covers the most relative important fuzzy areas first. But to be able to find also rules which not have
such a high relative importance than others, we decrease the relative importance bi of all those fuzzy areas
which are covered by the fittest solution after a new evolution. We use therefore a fuzzy variant adaptive-
boosting algorithm which modifies the distribution of the trainingsamples in order to make a classifier more
robust. The design of our boosting algorithm is inspired by [FS96] and [Hof]. Relative importance bi of
fuzzy areas are decreased based on how sufficiently they are covered by a solution (see equ. 7.3 for the exact
definition).

7.9 The Algorithm

The evolution of finding an optional set of rules which covers the memory is defined as the following algorithm:

Step 1 Initialize all samples form the memory by setting bi to the classified relative weight.

Step 2 Evolve the genotype which is the current rulebaseRdef for g generations. The genotype can be modified
with genetic opeartors like mutation or crossover.

Step 3 Evaluate the fittest solution ci after the evolution and add it to the set of solutions Rnew.

Step 4 Calculate the error E(ci) of the solution ci.

Step 5 Decrease bi of all samples from the memory by the factor β = (1−E(ci)) where subsume(ai, ci) is true.

bi(t + 1) =
{

bi(t) ∗ β if Act(ai) = Act(ci)
bi(t) if Act(ai) 6= Act(ci)

(7.9)

Step 6 If all bi of the sample memory are satisfied and below a threshold tboost go to step 2.

Step 7 Evaluate the set of solutions Rnew and select a limited number of solutions from it.

Step 8 Assign the set of solutions Rnew to the definitive rulebase Rdef .

Step 9 Go to step 1.

The algorithm itself is able to adapt itself fast to the long-term memory. The process of forgetting and
taking new knowledge into account is matter of the memory. The evolutionary algorithm searches for an
optimal set of rules which covers the detailed knowledge of the memory as general as possible.
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Features of this Algorithm

• fast converging to the current long-term memory

• learn gradually a fuzzy rulebase

• refines set of fuzzy rules with each new invocation.

• learnt rules loose truth and have only a limited lifetime

diploma thesis, december 2003



Chapter 8

Building Specific Behaviors

The controlling and learning architecture is applied to a subpart of a building. The learning algorithms are
indeed in a general form that allows it also to used them in related domains. As usual a controlled system
has its own preferences which have to be considered. Most of the problems in our building are caused by
the delayed adaption of individual sensors and effectors. Therefore, next to the learning algorithm we are
preprocessing delayed behavior which are explained in the following sections.

8.1 User Punishment

Because an effector state change often results in state changes within the environment, the system is after
the action situated in an other fuzzy area than before. For example the light is turned off which implies that
the daylight in this room decreases.

If the users now punishes a decision with switching on the light again within a very short time period, we have
to regard it as a real punishment of the last decision. By using a decision history we are able to determine
the conditions of the last decision and generate a temporary punishment into the short-term memory.

8.2 System Toggling

Due to the delayed behavior of a few effectors and therefore also sensors the system can come into a state of
toggling from one fuzzy area to the other and vice versa. E.g. the blind needs a lot of time to close or open.
All indoor sensors which are dependent of this blind are changing their state also with a delay. Our system
is looking online for such behaviors where a few rules are firing periodically within a short time period. Like
in the above section we are able to determine with a decision history the conditions of the last decisions and
can therefore interupt such a toggling by generating a temporary knowledge.
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Chapter 9

Framework Architecture

To develop a useful and universal framework we have to define the boundary of the system. There are many
different aspects and influences which characterize the architecture of a framework. This chapter tries to
point out the main influencing factors of a building system.

9.1 Building Access

A building system consists of many sensors and effectors. Most commercial buildings have an integrated
building bus system (like LonWorks [loc] or EIB [eur]) with several well-known devices like switches or
presence detectors. Often there is not only one bus system, but also other buses to control e.g. the heating
system. Therefore the framework must be able to handle more than one different bus system at the same time.
It is also thinkable to connect the framework to virtual software buses like for example instant messaging
systems (ICQ [ins]) or a ethernet bus.
Each of such buses operate in their own special way. That implies the necessary of an abstraction of this
different bus types with a common access interface.

9.2 Conflicting Goals of Different Interest Groups

A commercial building is occupied by different types of users that have its own interests and goals to maximize
their personal comfort. Whereas the management tries to minimize the running costs and the caretaker want
to act devices with consideration.
Our framework should offer a possibility that each party can introduce its own objectives.

9.3 Multi Agent System

As we showed above, there are many different aims and requirements. Some of them are dependent and
some independent on others. For a better understanding and to breakdown the problem, we want to divide
the framework in small software units. Each of these software units is responsible for one specific part of the
whole problem. Conventional software design concepts use interfaces and classes to reach a low coupling.
But it is still one software.
We design these software units as stand-alone agents. An agent represents a physical or logical part of the
building like the physical device bus or an inhabitant. Each agent has its own goals an can interact over a
network with other agents to achieve them. We defined for example an energy agent which enforces claims
of the power management or a comfort agent which provides maximum of comfort to all inhabitants.
We are using an agent framework, called ABLE [Age], from IBM to set up the agent environment. ABLE
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implements the FIPA [FIP02] and JAS [Fuj02] standard. Appendix C describes the functionality of ABLE
in more detail.
The communication between these agents is realized with an asynchronous messaging system. Agents can
communicate directly to other agents (by using an agent directory and transport messaging service) or
indirectly via a distribution messaging system (DMS).

9.4 Framework Layers

To keep the framework manageable, we divide the whole problem into smaller subproblems. Thereby it is
easier to conceive the difficulties and the suited solutions.
We defined the following subparts for our framework:

• Bus abstraction

• Structure abstraction

• Messaging

• Recovering

• Learning and controlling

Some of this subproblems have a relationship to the others, thus we illustrate the dependency graphically in
figure 9.1.

phys. LNS bus phys. ICQ bus

Bus Abstraction Bus Abstraction

Structure Abstraction

M
es

sa
gi

ng

R
ec

ov
er

in
g

Core services

Learning and controlling

Figure 9.1: Dependency of the framework subparts as a layer model. Messaging and Recovering are used of
every agent.

This chapter describes the concept of each part with its agents and the interaction between them.

9.5 Core Services

9.5.1 Messaging

An Agent can communicate directly with an other. But sometimes an agent do not know who is interested
in its information. So it is usefull to provide something like a mailing list for different interests. The Mes-
sageDistributionAgent offer this service. Each agent can create its own topic channel to distribute messages.
The MessageDistributionAgent delivers the message to all subscribed agents. The concept is comparable to
the observer pattern in object oriented software design.
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9.5.2 Bus Abstraction

The bus abstraction operate as a gateway between the hardware specific bus systems and other agents.
Furthermore it provides a common access interface to higher layered agents.
A building exists of several different devices. Each device type has its own idiosyncrasies and an its special
kind to control it. Therefore it is expedient to encapsulate all this and define a general interface.
We defined two layers of encapsulation:

1. Bus abstraction

2. Device abstraction

The bus abstraction defines a common access interface for different physical or logical bus systems (LNS
bus, ICQ, ABI bus). Each bus system is realized as an own controller.
The device abstraction allows a standardized access to all bus devices. Each device type has its own
specialized bus-specific implementation (Figure 9.2). All idiosyncrasies of a device are handled in the specific
implementation of the device type.

Figure 9.2: An example of a bus abstraction.

Modification Notification

To keep the message traffic as low as possible the BusAgent send on every modification of a device value a
notification message over the responding topic channel (TOPIC PREFIX DEVICE + ’device id’). Thus other
agents have not to poll the device states but can rather subscribe to the interested topic channels.

Public Interface

The bus abstraction is realized with the implementation of a BusAgent. It accepts only two message types
from non-core agents: to get and set the value of a device (9.1).

9.5.3 Structure Abstraction

The structure abstraction represent a structured view to the available devices. It builds up a hierarchical
structure of the building. This structure is represented as a tree of clusters whereby each cluster can contain
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Message type GET VARIABLE VALUE
Property P DEVICE ID ID of the interested device
Message type SET VARIABLE VALUE
Property P DEVICE ID ID of the device which is

requested to change its state
Property P DEVICE VALUE Suggested new value of the device

Table 9.1: Messages to get and set the state of devices.

several devices. Figure 9.3 illustrate an possible structure of an building.

Root cluster

Floor G

Floor H

Room 41 Room 41, window Room 41, door

Room 74 Room 84

Figure 9.3: Example on a possible hierarchical structure of a building. The devices (blue quadrates) are
combined into five clusters (black rectangles). The clusters itself are again combined to more general clusters.

Because building structure can changes and devices are removed, replaced or moved the structure is not
constant. The structure abstraction must provide the administration of a dynamic environment.

Public Interface

The implemented StructureAgent supports the above named requirements. After an initial startup it contains
only one root cluster. For example new devices can be added by sending a ADD DEVICE message to this
StructureAgent.
Table 9.2 list all supported public messages with the required parameters.

Modification Notification

For each modification of the structure, the StructureAgent sends notification messages to all interested
agents. For that it uses topic channels of the DistributionMessageAgent. Table 9.3 gives an overview of
the released messages for each modification instruction. The type of the notification message is always
STRUCTURE CHANGED and contains one property P EVENT with the event text. Thereby a depended agent is
always well informed about modifications of the structure and can react.

9.5.4 Recovering

To improve the safety and the reliability to whole running system must provide a recovery functionality.
For this we designed a global recovery concept, implemented by the RecoveryAgent. It sends periodically an
AUTO SAVE message to all running agents. This message includes the path and an unique filename in which
the agent has to serialize itself. The directory path changes automatically everyday, in order we get a backup
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Message type ADD DEVICE
Property P DEVICE TYPE Type of the device. Ex. ’lns.light’
Property P DEVICE NV The network variable of the device
Property P DEVICE DISPLAYNAME [Optional] A description/name of the device.
Property P DEVICE OPTIONS Additional options for the device.

Ex. smooth timeout for presence detectors.
Property P BUS TYPE Identifier of the bus.

Ex. ’lns’ for the LonWorks-Bus
Property P CLUSTER ID ID of the cluster which should contain this device.

Cluster must already exist.
Message type REMOVE DEVICE
Property P DEVICE ID ID of the device which should be removed
Property P CLUSTER ID Id of the cluster which contains this device
Message type CREATE CLUSTER
Property P CLUSTER ID ID of the parent cluster in the cluster tree

Note: The cluster on the top has the ID ’root’.
Property P CLUSTER DISPLAYNAME [Optional] A description/name of the cluster.
Property P SENDER AgentDescription of the sender. After successfully

creation this sender is notified with the cluster ID.
Message type REMOVE CLUSTER
Property P CLUSTER ID Id of the cluster which should be removed
Message type GET STRUCTURE
Property P CLUSTER ID Returns the structure tree from this cluster.

Table 9.2: Messages to manage the structure.

Event ADD DEVICE
Channel ADD DEVICE+’cluster id’ Cluster id of the parent cluster
Channel STRUCTURE CHANGED
Event REMOVE DEVICE
Channel REMOVE DEVICE+’cluster id’ Cluster id of the parent cluster
Channel STRUCTURE CHANGED
Event CREATE CLUSTER
Channel CREATE CLUSTER+’cluster id’ Cluster id of the parent cluster
Channel STRUCTURE CHANGED
Event REMOVE CLUSTER
Channel REMOVE CLUSTER+’cluster ids’ This message is sent to different channels. All

subcluster channels, the channel of the removed
cluster itself and to the channel of the parent cluster

Channel STRUCTURE CHANGED

Table 9.3: Summary of notification messages, which are released after a modification of the structure
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history tree.
The RecoveryAgent just coordinate the persistencing of all agents, but the effective serialization and restoring
functionality is part of each agent itself.
To restore the last persistent state of the system, the RecoveryAgent has to be started in an empty ABLE
platform with the parameter SystemRecovery. The agent searches automatically for the latest backup and
starts each agent, whereby the order of starting is still the same like the original.

9.5.5 Agent Interaction

The following diagrams show, how a user agent can act with the core services and how it will be processed
within the core. A detailed description of the used messages and their properties is listed in table 9.1, 9.2
and 9.3.

Add a New Device

The StructureAgent permits to add the same device to different clusters. But rather the BusAgent should
contains only one instance for each physical device. This intelligence is realized in the StructureAgent and
does not affect UserAgents. The UserAgent has only to send a message ADD DEVICE to the StructureAgent,
where the message is forwarded to the BusAgent. The BusAgent compares the new device with all existing.
If there exists already a similar device it returns the description of them to the StructureAgent. In the other
case, it creates a new device instance. The collaboration with the agents is illustrated in figure 9.4.

Figure 9.4: Collaboration of the agents to add a new device

Remove a Device

To remove an existing device from a cluster, the UserAgent has to send a message REMOVE DEVICE to the
StructureAgent, which removes it from the defined cluster. Instances of this device in an other clusters are not
affected. If it was the last instance of this device in the current structure, the StructureAgent automatically
removes the devices from to BusAgent (Fig. 9.5).

Add a New Cluster

The message CREATE CLUSTER prompts the StructureAgent to create a new subcluster. The StructureAgent
responses to the requester with a message which contains the new cluster ID. Figure 9.6 illustrate this process
in a graphical way.

Remove a Cluster

If a cluster becomes redundant it can be removed by sending a message REMOVE CLUSTER to the Struc-
tureAgent.
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Figure 9.5: Collaboration of the agents to remove an existing device

Figure 9.6: Collaboration of the agents to add a new cluster

Note: This command removes also all devices of the cluster and all subclusters with their devices (Fig. 9.7).

Figure 9.7: Collaboration of the agents to remove an existing cluster

Get and Set Device Values

By sending the message GET VARIABLE VALUE to the BusAgent every agent can ask explicitly for the current
state of a device. If the device is an effector, it can also be set to a new state by sending a message
SET VARIABLE VALUE.
Note: Do not use GET VARIABLE VALUE for polling the state of a device. By a subscription on the responding
topic channel, an agent will be well informed about every modification.
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9.6 Additional Autonomous Agents

9.6.1 Energy Agent

The EnergyAgent has a single objective; to save energy. It observes a cluster and checks periodically if there
is no person in the room (all presence detectors are low). If this condition is true, it requests all lights within
a specific cluster to turn off. The decision to turn off the light is delayed a few seconds. Thus we give other
control agents time to turn off the light based on their knowledge. If the light is still on after a timeout, the
EnergyAgent turns off the lights.

9.6.2 Control Agent

A control agent is started for one cluster. It learns the behavior of the user and controls all effectors of this
cluster with the learnt knowledge. The normal learning and controlling algorithm is replaceable.
After startup, the ControlAgent registers it to all topic channels of its devices. So it will always be notified
about the current state of its devices.

9.6.3 Cluster Viewer Agent

The ClusterViewerAgent is a graphical monitor of a cluster. It displays the states of all devices and offers the
opportunity to change the state of the effectors (Figure 9.8). Predominantly this agent is used for observing
clusters. But as a further step it could be expanded to real control panel.

Figure 9.8: Graphical agent to observe and control devices of a cluster

9.6.4 Structure Monitor Agent

This agent arose of the necessity to modify the current structure in an easy way. The StructureMonitorAgent
provides a graphical interface to add/remove devices and clusters (Fig. 9.9). The graphical user interface is
keeped really simple, but it gives a general impression about the opportunities for a further implementation.

9.6.5 Structure Manager Agent

To keep the StructureAgent as simple as possible, we add only the basic functions (add/remove device...) to
it. But there exists also some more complex tasks to modify the current structure. For example the adding
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Figure 9.9: Graphical agent to manage the current structure

of all devices of one room or the movement of clusters or devices in structure.
All such tasks should be implemented outside of the core, so we created a StructureManagerAgent. This
agents is waiting for STRUCTURE MANAGER CMD messages. If it receives such a message, it processes
it and waits for a next instruction.
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Chapter 10

Design

In this chapter we show the design concept of several agents. For further information read the JavaDoc
[TZ03b] and the comments in the source files.

10.1 ABIAgent

Each agent in our framework is derived from the abstract class ABIAgent. This class take responsibilities to
interact correctly with the ABLE framework. The ABIAgent itself is derived from AblePlatformDefaultAgent.
For writing a new agent it is only necessary to implement the five abstract methods:

• protected abstract void customInit(Map params)

• public abstract void receiveABIMessage(ABIMessage msg, String type)

• protected abstract void autoSave(String fileName, ABIMessage msg)

• protected abstract void recovery(String fileName)

• protected abstract void beforeQuit()

The first called method (except the constructor) is customInit() in which the agent can be initialized. The
map params contains all parameters as key-value pairs, which were entered in the console.

The most important method is receiveABIMessage(). The communication between the agents is handled
by a messaging system. If an agent receives a new message, this method is executed. The frameworks offers
an own message class ABIMessage. An ABIMessage is always defined by a message type (e.g. STRUC-
TURE CHANGE, ADD DEVICE, VARIABLE CHANGED...). A message contains a parameter list with
additional information. This list is realized with a map; contains also always a key-value pair. The message
types and parameter keys are defined in the class MessageConstants as constants.

Before an agents is quitted, the method beforeQuit() is invoked. An agent can deregister here its interests
or do some other stuff.

The methods autoSave() and recovery() implements the persistant function of an agent. The RecoveryA-
gent is responsible to trigger those methods.

10.2 Bus Abstraction

The design of the bus abstraction is divided into two parts. The first one is the general BusAgent which
manages several device objects (ABIDevice). The other part implements bus specific stuff like the imple-
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mentation of the BusController and the devices. So the BusAgent can manage any bus-type because of the
defined interfaces (BusController and ABIDevice). Figure 10.1 shows the design model for a LonWorks-
BusAgent implementation.

Figure 10.1: Incorporated classes of the BusAgent

The implementation is structured into the following classes:

• BusAgent: General default implementation of a BusAgent. It handles all the general stuff and delegate
concrete commands to the bus controller or to the devices.

• ABIDevice: Interface class for the specific implementation of bus devices

• DeviceDescription: This general device description is produced by the specific implementation of a
bus device and contains general information about it.

• Light, Blind, Presence, Daylight, Radiation, Temperature: This classes are specific imple-
mentations of LonWorks devices.

• BusController: Each controller type must implement this interface. The BusAgent gets access to the
specific controller implementation via this interface.

• LNSController: The LNSController is a specific bus implementation for the access to the LonWorks
bus.

• DeviceListener are used by the LNSController. It implements the required interface of the LonWorks
package.

10.2.1 Device ID Management

It is possible to start several BusAgents, for each bus type one. But devices of these agents must have a
unique ID. Since the StructureAgent is always started and there exists only one instance of it, it manages
the ID’s of the whole system.
After startup of a BusAgent it sends an IDRange request to the StructureAgent. This StructureAgent reserves
a new ID range for this agent and attach the range to the answer. Now the BusAgent can assign device IDs
within this range. If all IDs are spent, the BusAgent sends again a IDRange request.

diploma thesis, december 2003



10.2. BUS ABSTRACTION 43

10.2.2 Native Bus Implementation

Each type of bus has its own idiosyncrasies. These are implemented in the controller and the device classes.
The interfaces BusController and ABIDevice hide this complexity from the BusAgent.
The implementation of the BusController is responsible for the communication with the bus system, that
means to read sensors and to set effectors. Furthermore it has to notify the device instances about state
changes of the sensors.
Each type of physical device is represented by its own implementation of the ABIDevice. This implementation
maps the device ID to bus specific network variable (NV) and converts bus specific commands (like ′SET ON
100.0.0′ in the LonWorks bus) to double values which are used in the framework.

10.2.3 Example on the Basis of LonWorks-Bus

Value Change

If a sensor changes its value, a DeviceListener will be informed by the LNSServer. This DeviceListener dis-
patches the notification to the corresponding ABIDevice (e.g. Light in Figure 10.2). There the bus specific
command is translated into a system value. Now this system value is distributed via the MessageDistribu-
tionAgent to all interested agents by the BusAgent (Figure 10.2).

Figure 10.2: Collaboration of classes for a value change

Setting New Effector States

Each agent can change the state of an effector by sending a SET VARIABLE VALUE message to the correspond-
ing BusAgent (Figure 10.3). The BusAgent itself gets access to the device implementation by the ABIDevice
interface and set the new effector value. The device specific implementation is responsible to convert the
system value into a correct bus command and send it via the bus controller to the effector device.
Because it is possible that there is more than one running BusAgents, it is necessary the find out, which
of these agents is the correct one. This problem is solvable, because the device ID starts always with
a bus specific prefix (e.g. ’lns’ for the LonWorks bus). This functionality is already programmed in
DirectorySupport.getBusAgent(String deviceID). This method returns the correct AgentDescription,
which is necessary to send a message to that BusAgent.
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Figure 10.3: Collaboration of classes if a UserAgent sets the value of an effector to a new state.

10.3 Structure Abstraction

The StructureAgent is responsible to administrate the structure of clusters and devices. For that it uses the
utility class Structure. The structure of clusters is strictly hierarchical and starts with one root cluster. Each
cluster can contain several subclusters and several devices. It is permitted to add the same sensor device
into different clusters (e.g. outdoor radiation sensors). Figure 10.4 visualizes the relationship between the
incorporated classes.

Figure 10.4: Incorporated classes of the StructureAgent

The implementation is structured into the following classes:

• StructureAgent: The StructureAgent manages the awarded ID ranges and handles all the incoming
messages. Structure operations (add, remove...) are forwarded to the class Structure.

• Structure: This class manages the structure and make modifications on it. At startup the Structure
contains one root cluster.

• Cluster: A cluster can contain several subclusters and several device descriptions.
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• DeviceDescription: Each device is described by an instance of this class. The most important
attributes are ID, DisplayName and RealOnly. A device description can be placed in more than one
cluster.

10.3.1 Structure Modification

Due to the fact that a device can used in several clusters the administration is also more complex. The
following example gives an introduction to the dynamic concept of the StructureAgent. Further information
about the interaction with other agents are described in chapter 9.5.5 on page 37.

Remove Device from Cluster

Figure 10.5 shows the regular program flow to remove a device from an existing cluster. A user agent sends
the message REMOVE DEVICE to the StructureAgent which removes the device from the corresponding cluster.
After the successful removal the StructureAgent checks if the device is still used in an other cluster. If the
last instance was removed, it send a message to the BusAgent to remove this device also there.

Figure 10.5: Collaboration of classes to remove a device

10.4 Control Agent

The ControlAgent is a general implementation to control the devices of a cluster. During the initial startup
of the agent, the structure of the cluster (which should be controlled) is requested. Based on this the Contro-
lAgent sets up a StateMemory and a Controller for each effector. So each effector is controlled by its own con-
troller instance. The type of the used controller is defined in the startup parameter ImplementationClass.
For a better performance the StateMemory caches for each device the last known state. To reduce the
complexity and to improve the signal quality, the StateMemory merges all signal of the presence detectors
together to one (by OR gating).
Due to the defined Controller interface, the StateMemory is able to handle many different learning and
controlling algorithms. They just have to implement the defined interface (Figure 10.6).

The implementation is structured into the following classes:

• ControlAgent: The ControlAgent interacts as a gateway between the effective implemented controlling
algorithm and other agents. A ControlAgent is attached to one cluster. It registers for each included
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Figure 10.6: Incorporated classes of the ControlAgent

device its interests by the MessageDistributionAgent to be informed about any state modification of
the devices. The ControlAgent checks periodically if there is a new decision available.

• StateMemory: The ControlAgent set up a StateMemory for each effector of the cluster. This memory
caches the last known state of each device. On every change of a device state, the StateMemory creates
an InstructionTicket to inform the controller.

• InstructionTicket: The instruction ticket is like a snapshot of the current environment. Based on
these information the controller is able to learn.

• Controller: In order to handle different learning/controlling algorithms, we defined this general
controller interface. Each developed algorithm must implement it.

10.4.1 Learning

The controlling algorithm has two important tasks: to learn the user behavior (Figure 10.7) and to control
the effector state (Figure 10.8). According to the requirements one or both tasks are implemented.
Figure 10.7 visualizes the collaboration of the classes when a device changes its state. On every value change
the ControlAgent is notified with a VAR UPDATE message (1). The ControlAgent informs the StateMemory
about the changement. The StateMemory updates the cached value and creates an InstructionTicket to
inform the controller about the changement whereby the presence signals are combined to one (4 and 5).
This new InstructionTicket is placed into an internal buffer (6). An other thread checks periodically this
buffer for new instructions and forwards them to the controller (7). The reason for these instruction buffer
is, that we want to provide that the method receiveABIMessage() in the ControlAgent is finished as fast
as possible to be ready for new messages. With this concept the proceeding of the message and the learning
is thread decoupled.

10.4.2 Decision Making

The ControlAgent checks periodically if there is a new decision available for the current environment state
(Figure 10.8). If the Controller suggests a new decision, the ControlAgent sends a SET VARIABLE VALUE
message to the BusAgent to control the effector.
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Figure 10.7: Feed the control algorithm with instructions about value changes

Figure 10.8: ControlAgent checks periodically if there is a new decision available
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10.5 Genetic Fuzzy Controller

10.5.1 Overview

The GeneticFuzzyController is one specific implementation of the Controller interface and is used by the
ControlAgent. This controller implements a learning and a controlling algorithm. Its concept is described in
part II. This section explains the design and implementation of the following parts:

• Knowledge storage of temporary and long term memory

• Knowledge rewarding

• Rulebase generation

• Decision making

All processes of the GeneticFuzzyController are based on fuzzified inputs values. So the first step of the
controller is always the convertation of the numerical value from the environment (stored in the Instruc-
tionTicket) into fuzzy values (Figure 10.9).

Fuzzification Defuzzification

Learning and controlling algorithm

new instruction decision

Figure 10.9: Because the algorithm bases on fuzzy logic, all instructions are converted as first into fuzzy
values.

10.5.2 Fuzzy Memory

Our algorithm builds up a memory base for temporary and long term behavior. Therefore the algorithm has
to gather information about the system behavior. As in chapter 5 described, we collect information about
two situations:

• User instructions

• Rewarding of correct controlling behavior

For each of these situations the knowledge is build up resp. decreased. The class FuzzyAnchor administrate
this knowledge of one atomic fuzzy area. An atomic fuzzy area means, that each edge of this fuzzy area
enclose only one fuzzy state. This FuzzyAnchor collects for each possible output state the following two
characteristic value:

• Truth of the last user action in this fuzzy area: Collected in the attribute lastActiveDateness

• ”Lifelong” memory of this fuzzy area: Collected in the attribute dateness

Figure 10.10 shows the collaboration of the algorithm classes to build up the temporary knowledge. The
process is triggered for example by a dissatisfied user, when he is not happy with the current controlling
behavior and changes the state of the effector. This produces an InstructionTicket for the controller (step
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1). The FuzzyGeneticController recognize that it is a punishment of the user and will put the new knowledge
into the temporary knowledge base. For that it fuzzifies the instruction (step 2.1) and asks the fuzzy anchor
pool for all affected anchors (step 2.2). Now it forces each of this anchors with the maximum weight for the
new effector state.

Figure 10.10: A user instruction triggers the process to build up a temporary knowledge.

10.5.3 Rewarding

Due to the fact that the user normally is active if he is dissatisfied, we never get a direct reward from him.
But if there is no feedback from the user, we can interpret this as satisfaction/reward.
The class Rewarder is responsible to produce these rewards. It rewards the long term knowledge if the
system stays in the same (fuzzy) condition for a longer time. With every state change of the system the
timeout is re-triggered (Figure 10.11). This behavior is realized by starting a timeout thread on every state
change. When this thread expires, it checks if it is still the newest one. If there was meanwhile a state
change the thread terminates without an action. Otherwise it rewards the long term knowledge and starts
again.
Each reward increases the weight (dateness) of the current output state and punishes the weights of the
other output states.

10.5.4 Evolutionary Rulebase Generation

The rulebase generator combines the gathered long term knowledge of each atomic fuzzy area together in
more general rules. We use a genetic algorithm to create this fuzzy rulebase. The algorithm starts with the
current rulebase as an initial population and tries to find better rules by crossovering and mutation. We
use the framework JGAP [Jav] to evolve a genotype. So we don’t care about the implementation of all the
selection, we just implemented the following essential functionality:

• Genes

• Fitness function

• Crossover operation
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Figure 10.11: Timeout handling for knowledge rewarding.

• Mutation operation

As described in chapter 7 the whole genetic process is divided into three steps: The evolving of a new
rulebase, the selection of the best solution and the boosting of the uncovered anchors.
For each loop (Figure 10.12) the best founded solution (rule) is applied to the new population. This loop is
repeated until all anchors are covered by a rule or the maximum number of rules is reached. The process is
controlled by the Learner class.

Select the best chromosome
and apply it to the new
population

Create a new generation
by crossover and mutation
of the last population

Suppress covered anchors to
boost the chance of the
other anchors

New population

Figure 10.12: The schematic process of the creation of a new population of rules with a genetic algorithm.

Chromosome

A chromosome encodes the information of a fuzzy rule into a predefined number of genes. Each of this gene
encodes the states of one fuzzy dimension. The order of the genes is always the same like the order of the
devices in controlled cluster. The method Learner.translateIntoChromosome() converts an existing fuzzy
rule into such a chromosome. The chromosome class itself is realized by the JGAP framework.
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Genes

An instance of the class FuzzyGene represents one input dimension of the fuzzy rule. It contains a bit vector
(fuzzyStates) to encode the valid states of this input. Each bit represents one fuzzy set and is true if the
state is included in the fuzzy rule. For example the input dimension radiation is divided into five fuzzy sets
(A-E) whereby the rule covers only the first, the second and the last fuzzy set (A,B ad E). So the bit vector
of the gene is 11001.
The first gene of a chromosome represents the output action. This gene has a special character, because it
is only possible to set one state simultaneously. This specific behavior is implemented by derive FuzzyOut-
putGene of FuzzyGene.

Fitness Function

JGAP permits the usage of an own fitness calculation. The class BestMatchFitnessFunction (derived of
org.jgap.FitnessFunction) calculates with the method evaluate() the fitness of a chromosome. Unfortu-
nately the fitness must be represented by an integer value bigger than one. So we calculate internal normal
a double value between zero and one, but enlarge it at the end to a value from one to thousand.
The detailed calculation of the fitness function is discussed in the chapter 7 and 13.1.1.

Crossover Operator

The class FuzzyCrossoverOperator implements our specific crossover operator in the evaluate(Chromosome
solution) method. It selects randomly two chromosomes of the population and divide it randomly into two
parts. With this four parts, it creates two new chromosomes by crossover. The figure 10.13 illustrate this
process.
It is possible that a resulted chromosome is invalid. This could happen, when one or more genes of the
chromosome contains no true-bits. In that case the chromosome is not defined in this dimension. We throw
away such chromosomes by setting the fitness to the minimum.

0  1 0  0  1  1 1  0  0  1 0  1 0  1  0  1 0  1  0  0

gene 1 gene 2 gene 1 gene 2

0  0  1  1 0  1  0  0 0  1 0  1  0  1 1  0  0  10  1

output
gene

output
gene

Parents

Children

locuslocus

Figure 10.13: Crossover

Mutation

The mutation is not implemented as an own operator. JGAP use for the mutation the method setToRandomValue()
of the genes. JGAP selects automatically few genes and let them mutate. The above-named difference be-
tween an output gene and an input gene is reflected in the different implementation of this setToRandomValue()
method. A normal gene can contain more than one true-bit whereas an output gene always contains one
single true-bit.
The genetic algorithm has to be configured in advance with a specific mutation-rate
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Boosting

Without boosting, it is possible that a genetic algorithm will only find one (nearly perfect locale rule). But
we are interested to get an optimal set of rule which covers all used states. So we suppress the weight of
covered anchors to boost the changes of the other anchors. For that we expand the FuzzyAnchor with a
boosting value. At the beginning of an evolution, this boosting value is initialized, based on the current
datenesses. So we can reduce this boosted weight during the evolution without touch the real gathered
knowledge.

10.5.5 Decision Making

On every environment change the controller checks the temporary and the long term rulebase for new
decisions. Therefore it creates a DecisionTicket with the current system state as crisp and as fuzzy values.
Based on these ticket information the temporary and the memorized rulebase can make their decisions. Both
of them write their suggested decision into the ticket and then the DecisionUnit evaluates and selects the
better solution. This is returned to the controller which sends a request to set the effector to the new state.
Figure 10.14 illustrate the decision process with a collaboration diagram.

Figure 10.14: Classes collaboration for decision making

The controller retain the last few made decision in the DecisionHistory. This history is programmed as a
ring buffer and is limited to the last 50 decisions. Based on this information the controller can detect two
cases of problems:

• The user punishes a recently taken decision

• The system decide within a short period an converse action (System toggle)

In both cases the controller punishes the last decision by setting the temporary knowledge of the ancient
state to the new output action.

10.5.6 ABLE Rule Language

The ABLE framework from IBM provides a library of different learning and controlling algorithm. It uses a
common syntax to persist this knowledge. This syntax is called ABLE rule language (ARL). It is a matter
of human readable representation of the knowledge. The syntax is itself is similar to java. For further
information about ARL we refer to [ARL02].
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10.5.7 Utility Classes

To keep the main classes as clearly as possible, we use several utility classes. The following brief description
about them gives a overview about their functionality. For further information we refer to the JavaDoc
[TZ03b].

• RuleSupport: The RuleSupporter is used from several other classes to get ABLE fuzzy variables of
the environment. It is also able to create ABLE conditional rules.

• EnvironmentInfo: General information about the environment are available in the EnvironmentInfo.
This class knows e.g. how many input dimensions exist or into how many fuzzy states a specific input
dimension is divided.

• FuzzyRuleSetFactory: This factory creates for a given environment (several sensors and effectors)
the initial ABLE ARL ruleset. This ARL ruleset consists of the fuzzy variables for the devices and the
supporter methods to fuzzify a crisp value.

• FuzzyVariableFactory: The FuzzyVariableFactory creates concrete fuzzy variable instances from the
ABIFuzzyTemplates.

• ABIFuzzyVariable: ABLE represent fuzzy variables as an instance of AbleFuzzyVariable. Unfortu-
nately the ABLE class does not support a copy constructor and provides only a limited access to
its attributes. So we derived the ABIFuzzyVariable form AbleFuzzyVariable and added the needed
functionality.

• ABIFuzzyTemplate: An ABIFuzzyTemplate contains the fuzzy set definition of one specific device type.
This fuzzy sets are defined in the template ARL-file (fuzzyTemplate.arl). The FuzzyVariableFactory
contains for each possible device type an instance of this class.

• fuzzyTemplate.arl: This arl file defines the fuzzy sets of each device type.
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Chapter 11

Assumptions

In this chapter we explain our assumptions, which we defined before we developed and further analyzed our
new learning and controlling architecture. Because our diploma thesis is very limited in time we had to
make a few assumptions which we are trying to prove here in this part as sufficient as possible. However, we
believe an extensive and long-term analysis in the future is required in order to understand really to which
extend the system increases user comfort and reduces energy consumption.

Our novel learning and controlling architecture assumes:

1. Only a small part of the whole fuzzy state space will be used from a combination of input sensors.
Rules which covers unused or even unreachable space are not useful also from a computational point
of view. A learning algorithm should focus on these samples which the system has really produced.

2. The design of the fuzzy membership functions is a crucial point in order to control effectors efficiently.
Using well designed fuzzy membership functions, we believe each atomic fuzzy area will represent a
uniform action (e.g. light = on or light = off).

3. Neighbor areas within the fuzzy state space are dependent on each other. Fuzzy states which are at
the one end of a sensor input range are less dependent with one from the other end (temperature =
cold and temperature = hot are less dependent than warm and hot).

4. The user is not computable. He wants for the same condition mostly the same action, but the behavior
can change temporary.

Within the next chapters of this result part we are trying to prove these assumptions. Due to the fact that
the system was only running for less than 2 weeks, we can only present first results and discuss them. A
detailed analysis has to prove it in terms of the long-term behavior.
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Chapter 12

Acquisition and Evaluation of
Temporary and Long-Term
Knowledge

12.1 Realization

Within this chapter we explain the parameters and configuration of our learning architecture which was
evaluated in a simulated and real-world environment. Parameters are evaluated and defined during an
experimental phase and proved to generate good results. A more detailed analysis would be thinkable in
order to define them more accurate.

12.1.1 Aging and Forgetting

Acquired knowledge (temporary and long term) is not permanent and static. It is under a continuous mod-
ification. The temporary knowledge is especially designed to keep only temporary information. Instructions
which have to be learnt instantly but they getting forget also within a short period. On the other side, the
long-term memory holds a more solid knowledge. The dynamic behavior can also be defined in terms of
aging and forgetting, but the specific knowledge is rather durable.

In our memory base, we administrate the knowledge for the output states of each atomic fuzzy area (fuzzy
anchor) separately as a weight. These weights can be rewarded or punished. If one output state of this fuzzy
areas is rewarded, all other within this area will automatically decrease (punished).

During a reward, we accumulate a constant reward value to the current weight. The punishment is realized
by a decay factor between 0 and 1. The decay factor defines, how long a received reward affects the weight:
the nearly this decay factor to 1 the longer a reward will survive.

12.1.2 Rewarding

Because the user is not able to generate a positive feedback (see chapter 4), we have to determine the
degree of user satisfaction by ourself. As in chapter 5.3.3 described, we distinguish between two stages: the
verification and the activity.

On every state change of the system, the new state must survive the verification state before we generate
the first reward. The duration of this stage is defined by the constant time period tverification. If the system
is still in the same state after the verification, the reward will switch into the activity state. As long as the
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system stays in this stage, we produce periodically a new reward instruction (time period tactivity).

The rewarding could also be realized based on the real sensor activity. However, we believe that the time
duration for which a subset of the environment is in the same fuzzified conditions is a more crucial indication
that users within this environment are satisfied or would otherwise change its state.

12.2 Parameter Configuration

The configuration of the memorized knowledge is defined with four aspects:

• Decay factor: The knowledge (acquired as a weight) will decrease periodically (DecayInterval). In
fact the accumulated weight is multiplied with this decay factor D.

• Reward value: With every reward the knowledge-weight is incremented by this reward value R.

• Thresholds: Because the weight never reaches zero, it is necessary to define a threshold. If a weight
slides under this level, we do not consider this weight for further calculations. Both memory units
(temporary and long term) have their own threshold TT and TL.

• Reward interval: Each current state of the system, which does not changes for a longer time, can
be interpreted as a reward of the controlling behavior. So the knowledge has to be rewarded by the
reward value. This step is also repeated periodically. The frequency can be adjusted by the parameters
tverification and tactivity. On each reward, all other output states of the fuzzy area are punished
(decreased).

We predefined the configuration that the lifetime of a temporary reward is not able to relearn the behavior
of the long-term memory. Such a reward has to be generated more frequent or periodically. Therefore, we
suggest the following configuration:

- Decay factor (D):
- Reward value (R):
- Threshold temporary memory (TT ):
- Threshold long term memory (TL):
- Verification timeout (tverification):
- Reward interval (tactivity):

0.985
1.0
0.7
0.9
30 sec
after 5 minutes in the same fuzzy state

For this configuration the figure 12.1 visualizes the relearning of a behavior in the long term knowledge. It
illustrates on the right end of the chart a stable perfect learned behavior with the maximum possible weight

wmax = R/D = 66.67 (12.1)

for the first output state and an empty weight for the second. If we now learn always the opposite behavior,
the first output decreases with every new reward of the second. The cross point of this two functions is
reached after 3.75 hours. After a total of 23.7 hours, the weight of the first output state slides under the
threshold TL.
In contrast, a single reward in the temporary memory has an impact for

treward = logD(TT ) = 23.59 rewards ≈ 1.967 hours (12.2)

So you can reach the crosspoint within two user punishments.

Consider that the above calculated durations are not directly real time durations. A fuzzy area is only
rewarded respectively punished if the system is situated in that state. During our analysis, the system was
approximately two hours in each used fuzzy area. Based on this approximation, a single reward in the
temporary memory survives one day. Furthermore the rewarding interval is not constant. The first reward
is released after tverification, every further after a time period of tactivity.
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Figure 12.1: Reward and decay function over the time.

12.3 Results

12.3.1 Rewarding

The above mentioned configuration creates rewards if the system stays for five minutes in the same fuzzy
area. But if the system changes its state within 5 minutes, the system produces no reward. The duration,
in which the system stays in a specific fuzzy state depends a lot on the definition of the fuzzy membership
functions.

To analyze the concept of rewarding, we looked at a time period of 40 hours of the running system. Within
this term the system reaches 25 different fuzzy areas and produced 557 rewards (Table 12.1). Averaged the
system spent totally 1.6 hours in a fuzzy area. Figure A of 12.2 shows the distribution of the rewards in
more detail. Two-third of the fuzzy areas received more than ten rewards.

Fuzzy area statistic
of a time period of 40h
Number of reached anchors 25
Number of rewards 557
Number of user punishments 4
Mean summized residence time 1.6116 hours

Table 12.1: Statistic of the system during a test period of 40 hours.

Figure B of 12.2 shows the accumulated relative weights of the reached anchors. The maximum weight is
limited to ±66.6̄. A positive weight represents the action on, a negative off. Especially the knowledge to
turn off the light is well learned (due to the EnergyAgent). Except three states, all others suggests clearly to
turn on the light. These three areas have a weight near to zero. In comparison with the number of rewards
of these areas, we see that the system almost never stayed in that states.
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Figure 12.2: Distribution of rewards and relative weights. The order of the fuzzy areas is in both diagrams
the same.

12.3.2 Dynamic Behavior of Learnt Knowledge

The learning algorithm operates with the above described concept and configuration since one week. Based
on the log data of this period of time we analyzed the dynamics of the knowledge and explain them in the
following section.

The first simple example is visualized in figure 12.3. At this particular case, the long-term knowledge to turn
off the light develops to the maximum. Of course this is a consequence of the place of the fuzzy area: the
time is night and nobody is presence. In that case, our EnergyAgent make sure that the lights are turned
off. So this knowledge is rewarded every day. The chart does not increase continuously, it looks more like
a step. The reason for that is our concept of rewarding. As above described we reward this specific fuzzy
anchor only if the system is within that state. Obviously this is only true for a part of the day, because the
daytime is also an input dimension.
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Figure 12.3: This fuzzy anchor learnt nearly perfect to turn of the light, if it is night and nobody is there.
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Figure 12.4 shows a real user learnt behavior. This fuzzy area represent the action to turn on the light in
the morning if someone is presence and it is dark. Around the time 1600 the behavior of the user changed
temporary and the off-weight increased a little. But only after a short period, the behavior was again like
before and up-to-then the off-weight decreases with every reward for the on-weight.
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Figure 12.4: Generally the light was turned on. In some converse cases, the off-curve increases for a short
time.

Another interesting example is the fuzzy area illustrated in figure 12.5. It represents a fuzzy area with the
time constraint midday, but still a dark daylight and radiation. The user learnt firstly to turn off the lights,
whereas from another time point on the light should be turned off. With tuned fuzzy membership functions
it would be possible to make such areas more sensitive. If both weights are almost equal and not near zero it
is also difficult for our learning algorithm to find an optimal rule which covers this area with a good fitness.
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Figure 12.5: This fuzzy anchor relearn its behavior from on to off
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Chapter 13

Analysis of Evolutionary Learning
Algorithm

After the verification of the fuzzy memory in the last chapter, where we showed how knowledge can become
truth and vice versa loose significance, this chapter discusses results of the evolutionary algorithm that learns
a fuzzy rulebase based on that long-term memory.

We give first brief information about the setting up and present afterwards results of the learning algorithm
applied to a typical classification simulation and then applied to a real commercial office building where
people do normal work.

13.1 Realization

The principle and architecture of the fuzzy logic controller which is used for making long-term decisions is
explained in detail in chapter 7. We give here explanations of parameters and discuss determined results.

13.1.1 Fitness Function

The fitness function like defined in equ. 7.8 specifies how good a solution is and increases the chance of a
good solution to be reselected in the natural selection.

The fitness function contains three factors which all have to be satisfied in order to have a good solution.
The first one is an error factor that is near zero if the found solution covers many wrong-classified fuzzy
areas. The middle forces the solution to amplify itself as long as it covers not all equal classified areas and
the third one judges if the solution covers beside the equal classified also wrong or not classified areas.

In experimental analysis we have seen that the first factor is a crucial one. Because the current fuzzy
interference engine is up to now not able to incorporate also a given weight for each rule we don’t want
overlapping rules which postulate a different action. We weight therefore the error factor more than the
other two by square it (see also equ. 7.8).

q = 2 (13.1)
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13.1.2 Boosting Factor

The evolutionary learning algorithm uses an iterative rule learning (IRL) approach where first the most
important fuzzy areas have to be covered with a rule. After a new evolution the relative importance bi of all
fuzzy areas which are sufficiently covered by the fittest solution ci will be decreased. This process modifies
the current distribution of the input samples which is done with a boosting algorithm. We use a fuzzy
variant of AdaBoost [FS96] and the amount β of decreasing the relative importance bi of all covered fuzzy
areas depends on the accumulated weight of all covered fuzzy areas. If these areas are only well classified
areas the error will be small and the decreasing factor β will be nearly 1.0.

E(ct) =

∑n
i=1|Act(ai) 6=Act(ct)

wi∑n
i=1 wi

(13.2)

β = 1− E(ci) (13.3)

The relative importance bi of all covered fuzzy areas will be decreased by the boosting factor β:

bi = bi ∗ β (13.4)

13.1.3 Population Size, Number of Generations and Mutation Rate

During the evolution of a given rulebase which has to adapt itself in order to match as good as possible to
the current long-term memory, the evolutionary algorithm evolves the fuzzy rules over several generations.
If the algorithm has to learn a rulebase from scratch we generate an initial population based on the current
fuzzy areas.

We are using the following parameters within the evolutionary algorithm:

- Population size:
- Number of generations:
- Mutation rate:

60
20
1/100

Before every invocation of a new evolution, the genetic encoded fuzzy rulebase will be translated into a
population. The population will be filled with the fuzzy rulebase as many times as possible. The genetic
operations, the crossover and mutation, which are explained in the implementation chapter 10.5 are specially
designed to process fuzzy genes.

13.2 Results in a Simulated Environments

To find out which behavior is learnable with our learning algorithm, we defined an artificial environment
with two input dimensions. In our simulation we feed a predefined constant behavior pattern into the system
and compare it with the resulting fuzzy rules. The two input dimensions contain six possible states. The
output has two possible actions, on or off.

Of course in a real environment the behavior changes and consequently this simulated constant environments
are an ideal world. But we showed in chapter 12 that in many fuzzy areas the behavior of the stored knowledge
is the same during a longer time period.

diploma thesis, december 2003



13.2. RESULTS IN A SIMULATED ENVIRONMENTS 63

13.2.1 Disjoint Decision Space

The first tested configuration consists of two disjoint classified areas. One turns on and one turns off the
light (see figure 13.1). It visualizes the accumulated knowledge. There are nine learnt fuzzy areas with the
action A in the top left corner. On the bottom right, there are nine areas with the action B. The white areas
have no accumulated knowledge.

A B C D E F

A

B

C

D

E

F

Long term memory

100% Action A 100% Action B

No knowledge

Figure 13.1: 1) The accumulated knowledge for action A and B are totally separated. 2) After several
learning iteration the knowledge is exactly represented with two rules.

To analyze our genetic algorithm we start the evolution from scratch. Figure 13.2 shows the development
of the determined rulebase. The fuzzy areas in the top left corner are covered within three iterations with
exactly one rule. Because the other corner can not reached with the crossover operator the rulebase stay at
this level until a mutation is happen. After 30 iterations a rule mutated which reaches the other state space.
Within three more iteration this rule is also perfect evolved.

The example above was perfect solvable without any overlap because the equal classified fuzzy areas was
arranged as a rectangles. The configuration in figure 13.3 (on the left) consists also of disjoint classified
areas, but the optimal solution is not obviously. The optimal solution is between many disjunctive and a
few overlapped rules. The found rules (visualized on the right) covers the configuration completely correct.
To reduce the number of rules, the algorithm makes use of the empty space (rule Q and R).

Figure 13.4 illustrates the evolve of the rulebase for the above configuration. After only five iterations, the
algorithm found the optimal rulebase to cover all 21 used fuzzy areas correctly.

13.2.2 Uncertain Decision Space

Up to now the configuration of the simulated environment was always disjoint. That means that each fuzzy
area has accumulated only knowledge for one action. A rule which covers this area is therefore either correct
or completely wrong.
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Figure 13.2: Fast evolution of the rulebase in a simulated disjoint environment
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Figure 13.3: 1) The accumulated knowledge for action A and B are totally separated, but the action A is
diagonally arranged. This can not be covered by only one rule. 2) After five learning iterations the knowledge
is represented with nine rules. The A actions (diagonal) are covered by single rules. The rules to cover the
B actions have some overlap to minimize the number of rules.
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Figure 13.4: Fast evolution of the rulebase in a simulated environment

The configuration in figure 13.5 (left side) posses four uncertain fuzzy areas: (B,B), (B,C), (C,B) and (C,C).
For these areas the accumulated knowledge represents the action A with 66.6̄% and the action B with 33.3̄%.
Although the classifier assigns the action A to these areas, a rule which covers them has an error. But after
several iterations, the genetic algorithm extracts the three rules (on th right of figure 13.5) which represent
the classified areas correctly.
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Long term memory

2/3 Action A
1/3 Action B

No knowledge
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Rule 1
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Figure 13.5: 1) The accumulated knowledge of the fuzzy areas (B,B), (B,C), (C,B) and (C,C) is ambiguous.
The action A is more certain than the action B. So the classifier assigns the action A to this areas. 2) After
several learning iteration the knowledge is exactly represented with three rules.

The evolution of the rulebase to cover this configuration shows an interesting behavior (Figure 13.6). After
five iterations all areas are covered by a set of rules, but four fuzzy areas are covered with rules representing
action A and B. A more detailed analyze confirms the assumption that these areas are the uncertain four.
The algorithm found two rules, one for each possible action, whereby the uncertain space is covered by both.
After further 15 iterations the rulebase is optimized by a mutation and finally there is a perfect coverage.
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Figure 13.6: Evolution of the rulebase in a simulated uncertain decision environment

13.3 Results in a Real Environment

After a detailed analysis of the evolutionary algorithm in a simulated environment we discuss in this section
results obtained when the algorithm was applied to a real environment. Tn the test phase, our intelligent
controlling system was applied to three different rooms at the Institute of Neuroinformatics (INI). These
rooms differ in size, shape, usage and number of inhabitants. Due to the short time period of our diploma
thesis, we can only give here first results during normal operation. A long-term analysis has to be made
over several weeks or rather more seasons. We are planning to set up such a test and evaluation period to
obtain more data. In a first step a room should be just observed during normal usage. In a second step a
second test has to be performed with the same persons that behave similar like in the previous test and the
environment conditions should be more or less the same (e.g. in the winter, nearly same temperature and
no snow that increases illumination). Only such a setup can give us evidences how good or bad our system
performs in a longer time-constraint.

13.3.1 First Results With an Online Evolutionary Learning Based on a Long-
Term Memory

As we have seen in a simulated environment, the evolutionary algorithm is able to learn a fuzzy ruleset based
on a disjoint or mixed memory. The memory is represented with different fuzzy areas in which the system
acts. In all other areas is the system never been and should therefore also not make a decision because it
has no idea of its impact.

Usage of the State Space

During the first week of testing, we have seen that the system moves only in a subpart of the whole statespace
which we expected with our assumption. The reason for that are mainly the physical constraints of input
sensors which are sensing together and situations like Blind = up, Outdoor Radiation = bright, Indoor
Daylight = dark can never be reached by the system. Another reason is also that we could only look at
our test environment during a few weeks at wintertime which had almost the same weather conditions. An
analysis during a whole year or maybe just half a year would be more substantial.

Though, table 13.1 shows clearly that the whole state space can never be reached by the system. Learning a
rulebase which covers the full state space would be too much, because a rulebase which covers only reachable
states would be sufficient.
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Room Effector Input Sensors Total Fuzzy Areas Active Fuzzy Areas
Room 74 light 1 4 240 49 (0.20%)
Room 84 light 1 4 240 37 (0.15%)
Room 54 light 1 4 240 25 (0.10%)

Table 13.1: Relative usage of the fuzzy state space obtained in three rooms during an observation period of
2 weeks.

13.3.2 Online Rulebase Adaption

The fuzzy memory is constituted of different fuzzy areas which are weighted based on a accumulated re-
wards. The evolutionary algorithm has to learn a fuzzy rulebase on which a fuzzy logic controller is able
to take decisions. The algorithm should converge fast if the memory itself has changed dramatically. The
incorporation of new knowledge into the memory indeed can not happend from one to the other instance.
It is adapting itself continuously with small steps.

Figures 13.7 and 13.8 in room 74 and 54 illustrate the online adaption of the rulebase to the current memory.
The evolutionary algorithm is capable of adapting its rulebase in very few learning iterations to the current
memory. It is able to find fuzzy rules for most of the fuzzy areas, but generates sometimes also wrong rules
due to normal evolution.
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Figure 13.7: Rulebase adaption from scratch in a real environment (room 74). Notice the small number of
rules although the set of fuzzy areas increases.

Size and Shape of Fuzzy Rulebase

The shape and size of a fuzzy rulebase learnt with an evolutionary algorithm is heavily dependent on the
prespecified parameters of the algorithm. The most important part is the fitness function defined in 7.8
which judges each possible solution within the evolution.

The adaptive boosting algorithm modifies the distribution of inputs samples based on how sufficiently they
are covered by a proposed solution. The evolutionary algorithm is invoked as long as samples are uncovered.
By each invocation, the fittest solution will become part of the subsequent fuzzy rulebase. Therefore is the
size directly dependent on how many times a new evolution is started.

As seen in figures 13.7 and 13.8 is the size of the fuzzy rulebase small if its is consistently adapted to the
current memory. For all effectors in all three rooms, the rulebase was never bigger than 11 rules within the
test period. But as we have also seen in the simulation results, if the rulebase is learnt from scratch it starts
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Figure 13.8: Rulebase adaption from scratch in a real environment (room 54). Notice the small number of
rules although the set of fuzzy areas increases.

with a high number of rules. This is because we generate an initial rulebase based on the current memory
if no rulebase was learnt or is available. The learning algorithm tries to combine afterwards those atomic
fuzzy rules.

Behavior in Ambiguous Fuzzy Areas

The number and size of fuzzy areas is directly dependent on the design of the fuzzy membership functions.
Figure 13.7 shows in a nice way that the learning algorithm is in fact able to learn almost a perfect rulebase
but fails to cover the rulebase without conflicts.

Situations in which such a conflict can occur are critical changeovers from night to day, dark to bright or
similar. Imagine, users are coming in the morning and switch on the light whereas the light stays off the
other day. By regarding the weight of such fuzzy areas where conflicts occur, one can see that weights for
contradictory actions are nearly the same. The left figure on 13.9 shows the trend of a specific fuzzy area
where it is difficult to learn rule. This area would have after classification a small relative weight but the
error factor of the fitness function decreases a rule which covers this area and also the adaptive boosting will
focus more on this difficult areas. On the other side, the right figure of 13.9 shows a typical accumulated
weight trend of a specific fuzzy area.

The evolutionary algorithm is able to find for such areas rules, but has to make a trade-off because the
error and volume factor of the fitness of its fitness value can be very low. If the system is in an ambigous
fuzzy state where the rulebase would have two active rules proposing different actions on the effector we
are currently not setting the effector to the new state. Each solution evolved by the evolutionary algorithm
will have the same power in the fuzzy interferencing process to fire and trigger an action. However, this
process should take also the power of a firing rule into account during the defuzzification. We regard this
as a voting-issues where we give different weights to different rules based on the relative importness. A rule
which was found within the first evolution of one learning interaction is more important and should have
more power than another that was determined in the last evolution. This issue has to be fixed in the future
to enable a normal defuzzification.
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Figure 13.9: The left figure shows a typical trend of a fuzzy area. One action is represented with a higher
weight because it occurred more often than the contrary. The right figure illustrates a fuzzy area where both
weights are nearly the same and also with a high certainty. In such cases its really almost impossible to
learn rules which does not have a conflict. The system can not really judge which action to take. We have
to incorporate other preferences such as the cost for switching on the light is a little higher than the one to
turn it off.
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Chapter 14

Conclusion

14.1 Multi Agent Framework

We implemented an multi-agent framework with a clear architecture which is supporting major issues in
order to administrate and control a commercial building. These highly flexible, reliable and general services
are distributed on several individual agents. The overall architecture of our multi-agent framework can be
described in three abstraction layers:

• Bus abstraction layer

• Structure abstraction layer

• Learning and controlling layer

The framework is now able to handle several different bus types simultaneously whereas all share the same
access interface. Thus, it is possible to get sensor information of different building buses or virtual software
bus systems. The integration of virtual networks allows it to use also personalized software devices which
can run on individual personal computers.

The structure abstraction layer manages a non-stationary structure of all available devices. It provides a
dynamic modification of the structure and supports the concurrent adding or removing of devices during
runtime.

To provide a high reliability to the framework, a recovery system forces periodically each running agent to
make its current state persistant. Because of this, the system can recover itself from its last persistent state.

14.2 Learning and Controlling Architecture

We could prove that the learning and controlling architecture with two parallel units, which takes decisions
based on different memories, is able to learn the behavior of different inhabitants. Due to the a temporary
and a long-term memory we are able to learn temporary conditions without loosing knowledge which has
been rewarded many times in the past.

First analysis has shown, that the comfort of the building’s inhabitants can be increased. But it was not
possible to test the long-term behavior of this architecture because of the time limit in which this diploma
thesis has to be fulfilled. We are planning to test it during the next weeks in order to be really able to judge
the performance over a longer period.
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The proposed learning algorithms are able to learn either a temporary set of fuzzy rules or build up a long-
term memory. The use of several small controlling units made it possible to learn online and reason in nearly
realtime. By summarize the features we can argue that our control and learning architecture is able to:

• adapt itself based on the behavior of the inhabitants

• learn and take decisions only on a few fuzzy rules.

• incorporate new temporary knowledge and take decisions in nearly realtime

• adapts gradually a long-term rulebase with a fast evolutionary algorithm to the current long-term
memory.

The controller itself is up to now not capable to reason on a dynamic set of input values although the
framework supports it. Also the knowledge sharing between multiple controllers is not yet realized.
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Chapter 15

Future

Within this chapter we are dealing with possible extentions and issues which we think have to be solved in
the near future.

15.1 Multi Agent System

The multi-agent framework proved to offer flexible and still reliable services encapsulated in different agent.
During normal operation we encountered several minor issues which have to be realized in order to apply
the whole system on a more productive level:

• Enhance EnergyAgent with the feature to go in a suspended state or inhibit it to take any control
during a specific time period. These issue was mainly the desire of some users which are doing sensitive
research experiments where a increasing illumination can make experiments useless.

• Develop user interfaces which can show the current state of the whole system. This will be mainly
used for the purpose of demonstrations.

15.1.1 ABLE

During the implementation of the current framework we came across several major problems within the
ABLE framework. A distribution of all agents on several computers is possible, but the agent directory does
not provide a reliable lookup service.

15.1.2 Simulation

The evaluation of the current controlling and learning architecture depends heavily on the applied envi-
ronment. We think a simulated environment which approximates the behavior of a small subset of the
overall building’s structure would be useful in order to evaluate the long-term behavior faster. The small
environment has to be analyzed first, before the relative dependency between input sensors and effectors are.

All agents must therefore be able to work with a virtual time within the whole system to allow a speed up
of the simulation. We think here of an agent which distributes virtual steps in the multi-agent system.
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15.2 Learning

The learning units are not yet compatible with a dynamic size of clusters on which they are running. One
has to think of issues which occur if a part of the memory becomes invalid or will be extended.

With the dynamic structure it is possible that devices are moving from one cluster to the other (e.g. a
person or mobile robot). If a cluster becomes empty the control agent should recognize it. It can either be
suspended and wait for any new occupants in the future or shutdown itself.

Another issue which the dynamic structure implies is that knowledge becomes invalid at one specific point
but would be used in another reasoning system that holds a new mobile device. We would like to analyze the
extraction of knowledge and if possbile also sharing with others. This could also be used if our system will
be deployed to a new cluster where no particular knowledge is available. The size and shape of the cluster
is indeed similar to another cluster in which knowledge was already learnt.

15.2.1 Fuzzy Membership Functions

As we have seen in our analysis a accurate design of the fuzzy membership functions is a really important
task. The whole learning algorithm relies on this design. The current fuzzy membership functions are an
approximation which were made by our predecessors in [RS02]. However, we believe the accuracy of the
fuzzy reasoning could be increased if these are defined based on statistical conditions which regard also
different seasons.

It would be thinkable to tune them also with a learning algorithm in order to adapt them to the current
used range of the sensor. A normal sensor will sense for example during the wintertime in another range
than in summertime.

15.2.2 Fuzzy Voting

As we have discussed in our results it is essential to incorporate a fuzzy voting system. Due to imprecise
knowledge in the long-term memory it is possible that contrary fuzzy rules will be found which all have
the same weight in the fuzzy interferencing. A fuzzy rule which is hard to learn because of such imprecise
memory areas must have a smaller voting weight as one that was easily learnt. By regarding also the other
mentioned problems of the fuzzy interference engine provied in the ABLE framework, it is maybe worth to
take also other engines into consideration or implement an own one.

15.2.3 Personalization

The identification of individual users is possible with the usage of a novel personal PC agent. The learning
algorithm can process different presence signals but has not yet an evaluation of the individual desire of each
user.
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Appendix A

Brief Explanation of Fuzzy Logic
Expressions and Notation

Within this document we are using a fuzzy notation which is largely similar to the ones in [Ful00], [CCSZ21]
and [CZ16]. The notation is mainly adapted to the one in [RJD04]. We give here no further introduction
into the theory of fuzzy logic. For more information, consult [Ful00] or [RS02] which has a fuzzy primer.

Every fuzzy variable consists of a number of fuzzy sets. Every of these fuzzy sets is identified by a unique
name (label) which associates a human readable string with a formal definition of a fuzzy set. All fuzzy sets
together define a set of membership functions.

The set of all labels of a fuzzy variable X0 is denoted as L. Example: L(X0) = {cold, normal, warm, hot}
(which is an example for a temperature fuzzy variable). For a discrete variable Y L(Y ) is the set of all
possible values of the discrete variable. Example: L(Y ) = {0.0, 1.0, 2.0}.

A ruleset consists of a finite number of rules R (see equation A.1). r specifies the number of rules of the
ruleset (equation A.2).

R = {R1, R2, . . . , Rr} (A.1)

r = |R| (A.2)

A rule (equation A.3) consists of a set of sets which specify the labels for every fuzzy variable that need
to be true such that the rule becomes true. yj is a fuzzy or discrete output value of the output variable:
yj ∈ L(Y ).

Ri = ((E0 ⊂ L(X0), E1 ⊂ L(X1), . . . , Er ⊂ L(XN−1)), yj) (A.3)

Ni (equation A.4) denotes the number of fuzzy input variables of rule Ri.

Ni = |{X0, X1, . . . , XN−1}| (A.4)

Only sets Ei are valid that satisfy the condition Ei ∈ P(L(Xi)), where Xi is a fuzzy variable. In a more
human readable form a rule looks like this:

Ri : if X0 is E0 and X1 is E1 then Y is yj
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The set of conditions Ei of a particular fuzzy variable Xi is meant to be inclusive which means that every
lik ∈ Ei makes the condition true. lik denotes a single label of the fuzzy variable Xi.

Eij denotes the set Ej of rule Ri.

Example:
Fuzzy variables: X0 and X1. N = 2
Labels: L0 = {A,B, C, D, E}, L1 = {F,G, H}
R = {R0, R1}
Output variable is Y , L(Y ) = {y0, y1, y2}
R0 = (({A,B, E}, {F,H}), y0)
R1 = (({D,E}, {G}), y2)
E00 = {A,B,E},E10 = {D,E},E11 = {G}
The rules of this example could be expressed in boolean notation as:
R0 : if ( X0 is A or B or E ) and ( X1 is F or H ) then Y is y0

R1 : if ( X0 is D or E ) and ( X1 is G ) then Y is y2
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Appendix B

Analysis and Extentions of the
Previous Learning Algorithm

B.1 Overview

The developed learning and controlling algorithm of the previous project [RJD04] is designed to learn user
behavior from sparse data that is acquired in a non-stationary environment. The learning algorithm produces
a maximal structure fuzzy rulebase and adapts itself continually. For each new user instruction it use this
new knowledge to strengthen or modify the current rulebase.
We applied this algorithm to our new framework. During the reimplementation we extended and modified
the algorithm. This chapter gives a brief overview about these extentions.

B.2 Algorithm Extentions

Due to the fact that the algorithm learns based on the really sparse user interactions and it is a one shot
learning, it is important to manage the gathered training sets carefully. Driven by this aspect we extended
the two central function of the algorithm: the reduction and the amplification of rules. We do not present
here the effective implemented algorithm, but rather the problem with the antecedent approach and the
concept of our extention. The detailed realization is more complex and described in the JavaDoc in the
source code itself.

B.2.1 Considering of Physical Constraints

A fuzzy variable consists of several fuzzy sets (also called fuzzy membership functions). Each of this fuzzy
sets represent a range of a physical value, so they have a physical order based on their defined range. We
believe that the user’s behavior is also dependent on this physical constraints. To consider that, we permit
only rules which continuously cover the fuzzy states of an input dimension. That means that it is not allowed
to create a rule where the condition for a dimension contains for example only the first and the fourth state.
In that case the definition range of this rule is not continuously.

So the valid fuzzy rule

presence IS A_on AND radiation IS A_dark, B_middle AND
daytime IS A_night1, B_morning, E_evening, F_night2

THEN light IS A_on;
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must be divided into two separate rules:

IF presence IS A_on AND radiation IS A_dark, B_middle AND daytime IS A_night1, B_morning
THEN light IS A_on;

IF presence IS A_on AND radiation IS A_dark, B_middle AND daytime IS E_evening, F_night2
THEN light IS A_on;

B.2.2 Minimal Reduction with Minimal Knowledge Loos

In the case if a new user instruction Ri is in conflict with an already existing rule Rd of the rulebase Rdef ,
the rule Rd has to be reduced until the conflict is solved.
Up to now the reduction algorithm removed in each input dimension of the conflicted rules Rd this states
which are also defined in the user instruction Ri. This eliminates all conflicts but it is not the minimal
possible reduction. The example in figure B.1 illustrates this on the basis of a two dimensional rule space
with an existing rule. The blue circle represents the converse user instruction Ri. To solve this conflict on
the fuzzy area (D,C), the algorithm removes the state D from the first dimension (reduction A, visualized
as an arrow in figure B.1) and the state C from the second dimension (reduction B).
With this proceeding we loose more knowledge than required. The conflict can already be solved, if we
reduce only one of dimension. Furthermore some reduction cross out gathered training sets. In our example
(figure B.1) the reduction A removes less rule space but more knowledge, whereas the reduction B flushes
no knowledge but reduce the rule size more than the reduction A.

Our new reduction algorithm consider this both aspects in the following order:

1. Keep as much training samples as possible

2. Reduce the rule size as less as possible

We realize this by reduce each possible reduction and choose the reduction which keeps the most knowledge.
If there are more than one solution, we select the reduction which has the higher rule volume.
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Figure B.1: Example of a reduction.
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B.2.3 Maximal Local Amplification

The algorithm amplifies the knowledge of a new user instruction Ri in the rule space to covers the whole
state space as soon as possible. This amplification was realized with the algorithm proposed in [CCSZ21].
The simplified concept of this amplification algorithm works as following:

FOR EACH dimension d DO
amplifyDimesionToMaximum(d)

END

This solution of amplification is quite fast, but does not find the maximal amplification. The reason is that
the algorithm amplify firstly the first dimension as much as possible. In the next iteration it tries to amplify
the second dimension based on the previous found amplification of the first dimension. In our example
(Figure B.2) this algorithm would not be able to find the maximal blue stripped amplification, because
the first iteration expands the instruction Ri (D,C) in the first dimension to the maximum amplification
({A,B,C,D,E},C). Based on this amplification there is no expansion possible for the second dimension.
Further more this algorithm privilege the first dimension. Therefore the order of the input dimensions have
an crucial effect which we can not judge or define in advance.
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Figure B.2: An example of the amplification of a user instruction to the maximum possible size.

Our implementation of the amplification algorithm tries for each dimension to achieve the maximal expansion.
We apply the amplified rule with the maximal volume to the definitive rulebase Rdef .

B.3 Conclusion

After we had adapted the algorithm with the above described modifications and extensions to our new
framework, we started to control several rooms for two weeks to collect information about the behavior. In
this section we list our conclusions due to the analyze of the gathered data.

B.3.1 Sparse User Interaction

As also described in our term project, the user interaction is really sparse (Chapter 4). Especially in a well
controlled room, the user should never take a decision.
Furthermore, it is not possible for the user to produce a reward instruction. If the user changes the state
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of an effector, it is always a punishment of the current rulebase because the actual active rule suggests the
converse action.
Based on that perception, we can say that the user has no possibility to introduce a positive feedback to the
system. It is necessary the find an additional way to get this positive feedbacks from the user.

B.3.2 Unused Rules

Within this two weeks the learning algorithm produced 40 rules whereas only five are regulary used. The
other rules are retreated into an unused space which will not be reached by the system again. In general we
can say that the current algorithm produces a small set of used rules, but keeps a huge among of unreachable
rules.

B.3.3 One Shot Learning

Because the algorithm is a one shot learning algorithm, it has no knowledge about statistic values. A new
converse user instruction replaces (or reduces) an existing rule also if the rule is strengthened by several
training samples. This behavior makes sense because a learning algorithm has to respect the current user
behavior (at least temporary). But on the other side, it inhibits the learning of a long term behavior.
We believe that it is necessary to design a learning algorithm in two parts. One learns temporary behavior
of the user and control a room based on that knowledge. But this knowledge is also only temporary and
should be forgotten after a while. The other part learns the general long term behavior. The long term
knowledge can be permanent, but it must also be able to relearn behaviors.
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Appendix C

Agent Building and Learning
Environment

Agent Building and Learning Environment (ABLE) is a Java framework, component library, and productivity
tool kit for building intelligent agents using machine learning and reasoning. It provides mechanisms to
distribute agents to different computers. ABLE is a research project of the IBM T.J. Watson Research
Center and is offered by IBM on alphaworks.

Within our framework we are using only a small subset of the whole ABLE services:

• Agent services

• Messaging transport system

• Fuzzy engine

• Fuzzy rule sets

C.1 Problems

Our framework uses several different specific ABLE services whereas most of them work more or less reliable.
However, there are some crucial bugs in their framework which we fixed with an own solution.We give here
a brief overview of current bugs and explain also our solution to them.

Directory Service Returns Null Pointer

ABLE supports the distribution of agents on several platforms. The directory service provides a query
interface to search agents with a directory lookup. This service is used by several agents and works only
well, if all agents are running on the same platform as lifecycle, naming, directory and transport service. But
if an new agent is started on a different platform (which can still be on the same computer within another
virtual machine) the query returns for some agents a null pointer instead of the agent description. This can
be the case for remote agents as well as for local ones.

Due to this problem e.g. the RecoveryAgent is not able to backup all agents or the AgentMonitor is not able
the give information about all running agents distributed on several platforms.
This bug is still unsolved!
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Dynamically Adding of Rules

ABLE provides to create new fuzzy rules and to add it to the rulebase at runtime. That works well without
any exception, but the new rule will never fire. It looks that it rulebase is not reinitialized correctly after
adding a new rule. We solved the problem with a work around: after adding the new rule, the rulebase will
be saved into an ARL file and then reparsed. Afther that, the rulebase will be initialized correctly.

Memory Leak of AbleRuleSet

It seems that the class AbleRuleSet has a memory leak. If we create and release instances of this class more
than 260 times, we get an OutOfMemory exception. As we are creating just one AbleRuleSet on startup it
is not really a problem up to now.

Mystic ARL Comment Modification

Each block, variable or rule of an ARL file contains an comment. Because the parser and this ARL-file
writer does not work exactly identical, the comment string gets with each read/write cycle a white space
more at the beginning and end. We simply remove this white spaces after reloading the ARL file.

Internal Used Fuzzy Sets Are Visible

Each fuzzy variable is represented by the ABLE class AbleFuzzyVariable. With the method getFuzzySets(),
we get a list of all defined fuzzy sets. But this list also includes some internal fuzzy sets which are generated
from the ABLE framework. Fortunately the name of this additional sets end always with ’NPS’ and it is
easy to filter them.

Order of Fuzzy Sets Is Not Defined

The order of the returned fuzzy sets does not match with the definition in the ARL file. Each fuzzy set
starts therefore with a capital letter which defines the real position. We know therewith that the fuzzy set
Ć middayśhould be placed at the third position.

C.2 Fuzzy OR Operator Is Not Supported

ABLE does still not provide the fuzzy OR operator. We use instead an AND condition which can be seen
as a approximation. Within fuzzy logic it is not exactly true like in normal boolean logic. We used the
approach from the predecessor work [RS02].
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Glossary

ABI Adaptive Building Intelligence

ABLE Agent building and learning network

Agent An agent is a computer system that is situated in some environment, and that is capable
of autonomous action in this environment in order to meet its design objectives ([WJ95]).

AHA Adaptive Home Automation

AI Artificial intelligence

ARL ABLE rule language

DAI Distributed artificial intelligence

EA Evolutionary Algorithm

EIB European installation bus

ETH Swiss Federal Institute of Technology

FIPA Foundation for Intelligent Physical Agents

FLC Fuzzy Logic Controller

GA Genetic Algorithm

GFLC Genetic Fuzzy Logic Controller

HSR University of applied science Rapperswil, Switzerland

IB Intelligent Building

IE Intelligent Environment

INI Institute of Neuroinformatics, University and ETH Zurich, Switzerland

JAS Java Agent Specification

LNS Lon Network Server

LonWorks Field bus network protocol / standard

MAS Multi agent system

MDA Message Distribution Agent

ML Machine learning

UNIZH University of Zurich, Switzerland
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