Overview

- Introduction
- ABI System Architecture
- Distributed Agent Applications
- Intelligent Learning System
- ABI Simulator
- Motivation for learning
- In a later lab meeting:
 - Learning a dynamic living and working environment
 - Results / Discussions
 - Conclusions and Future Work

Introduction

"An intelligent building is one that doesn't make the occupants look stupid."

IB Goals

- Not disturb occupants (user comfort)
- Be reliable
- Minimize energy consumption
- Incorporate all available sensor information (Multi-sensor environment)

Our Objectives (Term Project)

- In our term project we implemented a new ABI System built on the Open Service Gateway initiative (OSGi)
- Integration of wireless devices provided by our industry partner (Feller AG).
Our Objectives (Diploma Thesis)

- Several major improvements including incorporating additional sensors and effectors (LonWorks)
- Distributed Agent Applications
- Prediction algorithms

ABI System Infrastructure

ABI System based on OSGi

Distributed Agent Applications

Area Controller Agent

Area Controller Agent PC Presence
Area Admin Agent
- Global administration
- Centralize ABI System security

Area Logger Agent
- A database application has been developed that logs any events within a specified building part, in order to be capable to “replay” their collected data.
- Only practical to a certain point of degree since only sensory data can be replayed.
- However it is important to persist data in particular for data mining and to validate any interacting building intelligence.

Environmental Analysis (55.G.84)

Environmental Analysis (55.G.74)
- Simple Environments (only a few strong inputs)
- Complex Environments (more inputs required)

Intelligent Building Framework (IBF)
- The IB Framework provides:
 - Enhanced testing possibilities
 - Supports the development
 - Is extensible (Real Time Simulation)
 - A method to measure the performance of the system
 - Defines a set of well defined interfaces that serves as a schema for individual device agents
Intelligent Building Framework (IBF)

- Each environment is different
- Likewise each prediction algorithm
- Decision Controller (DC) considers the changing strengths and weaknesses of different prediction algorithms

IBF Algorithm

- Prediction is performed by taking a weighted vote among a pool of prediction algorithms
- Learns by altering the associated weight
- Vote is steered as a function of user interactions

ABI Simulator

Demo

Common issues

- Non-stationary environment
- User instructions are very sparse
- Energy savings vs. User comfort
Other Difficulties

- Different skylight levels can be found under the same sunlight condition.
- Commissioning
- Which inputs need to be provided for learning?
- Input pre-processing necessary?
- Practically all existing daylight control systems only provide the interior daylight. Sufficient enough to optimally control all environments?
 - Instant light reflections?
 - Environment located in the basement?
 - Other light sources?
- Occupant (behavior) changes, LTM/STM?

Summary

- A new ABI System has been developed, based on OSGi, successful LON integration
- Distributed Agent Applications
- IBF has proven to succeed to handle different learning algorithms by judging them in their performance
- Real Time Simulation platform

Questions?